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Abstract

If two haplotypes share the same alleles for an extended gene tract, these haplo-

types are likely to be derived identical-by-descent from a recent common ancestor.

Identity-by-descent segment lengths are correlated via unobserved ancestral tree

and recombination processes, which commonly presents challenges to the deriva-

tion of theoretical results in population genetics. We show that the proportion

of detectable identity-by-descent segments around a locus is normally distributed

when the sample size and the scaled population size are large. We generalize this

central limit theorem to cover flexible demographic scenarios, multi-way identity-

by-descent segments, and multivariate identity-by-descent rates. The regularity

conditions on sample size and scaled population size are unlikely to hold in ge-

netic data from real populations, but provide intuition for when the Gaussian

distribution may be a reasonable approximate model for the IBD rate. We use

efficient simulations to study the distributional behavior of the detectable identity-

by-descent rate. One consequence of non-normality in finite samples is that a

genome-wide scan looking for excess identity-by-descent rates may be subject to

anti-conservative control of family-wise error rates.
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1. Introduction

Two individuals share a haplotype segment identical-by-descent (IBD) if they

inherit it from the same common ancestor. Here, we study the length of IBD seg-

ments that overlap a single focal location. Ignoring gene conversion, IBD segments

are randomly cut by crossover recombination in each future generation. The length

of an IBD segment is thus shorter, with a higher probability, the more removed its

common ancestor is from the present day.

Using modern methods, long IBD segments can be detected with high accuracy

from genetic data [21, 43, 49, 62]. Detectable segments can provide rich information

about the recent genetic history of a population sample. For instance, detected

IBD segments have been used to test for rare variant associations when a disease

allele is untyped or a genome-wide association study is underpowered [7, 24, 38].

They have also been used to estimate relatedness [21, 43, 62], haplotype phase

[2, 36], mutation rates [41, 56, 57], recombination rates [60], gene conversion rates

[6, 41], demographic changes [4, 8, 40], and positive selection [54]. We will study the

sample mean of indicators if an IBD segment is long enough to be reliably detected.

The binary random variables are correlated via unobserved recombinations and a

random ancestral tree. IBD segments longer than 0.02 Morgans (defined below)

can be detected with high accuracy in high-quality genetic data [55].

For independent, identically distributed data, maximum likelihood estimators

are asymptotically consistent, efficient, and normally distributed under regularity

conditions (Section 10.6.2 in Casella and Berger [10]). Composite likelihood ap-

proaches are commonly used in genetics when it is analytically intractable or com-



putationally expensive to address dependencies in the data [32]. To what extent

consistency, efficiency, and asymptotic normality extend to maximum composite

likelihood estimators is generally unknown [32]. Studying maximum composite

likelihood estimators can be especially challenging if their maxima do not have a

closed form [40, 56]. In our work, the composite likelihood will be the binomial

likelihood, which is maximized by the sample mean of binary random variables.

The statistical property we care about the most is asymptotic normality, which

means that the estimator’s distribution converges to a Gaussian distribution as

the sample size tends to infinity [10].

Without theoretical results, some authors assume that their estimators are

distributed within some parametric family. In one example, Palamara et al. [42]

assume without proof that their estimator of coalescent rates within the past tens

of generations is Gamma distributed. In another example, Carmi et al. [9] observe

that the Gaussian distribution is a good fit for the average fraction of the genome

shared IBD by an individual with any other individual in a population sample.

Still, this empirical observation is not the same as a theoretical result. When

the sampling distribution is not sub-normal [58], statistical inference assuming

normality may understate the probability of extreme values.

Creating valid confidence intervals can be more straightforward when an esti-

mator is asymptotically normally distributed. The parametric bootstrap approach

proposed in Temple et al. [54] gives adequate coverage in selection coefficient esti-

mation for numerous simulation studies. Their technique implicitly assumes that

the rate of detectable IBD segments around a locus, and certain functions thereof

(Theorem 5.5.24 in Casella and Berger [10]), are normally distributed in large

samples. In contrast, bootstrap resampling [16] has been employed in IBD-based



estimation procedures [4, 6, 8, 40, 56]. For significance level α, these existing works

do not demonstrate that their (1 − α)% bootstrap confidence intervals contain a

true parameter in (1 − α)% of simulations. Moreover, nonparametric bootstrap-

ping tends to give confidence intervals that are not wide enough to satisfy coverage

[37].

Here, we derive sufficient conditions under which the proportion of detectable

IBD segments around a locus is asymptotically normally distributed. The proof

is to show that the variance of detectable IBD segments dominates the covariance

between detectable IBD segments. Our conditions involve a minimum length of

detectable IBD segments, multiplied by the population size from which a large

sample is drawn. The large population size requirement, in particular, indicates

that most of the branch lengths in the ancestral tree must be long for the result

to hold. The overall contribution of this work is to support IBD-based statistical

inference with rigorous theory and extensive simulation studies.

The outline of the paper is as follows. In Section 2, we formally define our

probability model for IBD segments that overlap a fixed location. In Section 3, we

present and prove our main result for the asymptotic normality of the detectable

IBD rate around a fixed location. In Section 4, we generalize our central limit

theorem to cover nonconstant population sizes, multi-way IBD segments, and IBD

rates between samples from the same population. In Section 5, we use simulation

to investigate the statistical properties of IBD-based estimators and IBD graphs

around a locus. Many calculations of covariance terms are left to the Appendix.



2. Preliminary material

First, we define our mathematical notation (Table 1). The notation in Sec-

tions 2.1 and 2.2 follows the notation used in Temple et al. [55]. We use the

Kingman coalescent [28, 29] as a model for the times until recent common an-

cestors. We model recombination using the classical model of Haldane [25] under

which crossovers occur as a Poisson process. The probability that an IBD segment

is longer than a detection threshold is derived by integrating over these two waiting

time distributions.

2.1. The time until a common ancestor

Let n be the haploid sample size and k ≤ n be the size of a subsample. Define

N to be the constant population size. Let the random variable Tk denote the time

until a common ancestor is reached for any two of k haploids, which we measure

in units of N generations. In the discrete-time Wright-Fisher (WF) process, each

haploid individual has a haploid ancestor in the previous generation, and if haploids

share the same haploid ancestor, their lineages merge.

The Kingman coalescent comes from a continuous-time scaling limit of the

WF process when subsample sizes are much smaller than constant population

sizes. Specifically, Tk converges weakly to Exponential(
(
k
2

)
) for k ≪ N and

N → ∞ [28, 29], where
(
k
2

)
is the rate parameter. For the proofs of our theo-

retical results, we consider the marginal covariances of IBD segments involving

two, three, and four specific haplotypes. As a result, we focus only on the times

T4 ∼ Exponential(6), T3 ∼ Exponential(3), and T2 ∼ Exponential(1) until any two

of the four, three, and two haploids reach a common ancestor, respectively.



2.2. The distance until crossover recombination

The genetic distance (in Morgans) between two loci is the number of crossovers

expected to occur in an offspring gamete. Assuming independent crossovers, Hal-

dane [25] derives that the genetic distance until a crossover recombination is ex-

ponentially distributed. This result leads to modeling crossover points along the

genome as a Poisson process. Browning [3] considers some other crossover models

[30] when studying transitions between IBD states, whereas we exclusively use the

Haldane model.

From a fixed point, the Morgans distance in one direction until a gamete off-

spring crossover is exponentially distributed with rate parameter 1. After t inde-

pendent meioses, the surviving haplotype segment length to the right of the focal

location is distributed as Exponential(t), where t is the rate parameter. Note that

our model concerns recombinations around a focal point, whereas the sequentially

Markovian coalescent concerns recombinations along the genome [27, 33, 45]. Let

a and b be sample haplotypes in the current generation, and define La, Ra | t ∼

Exponential(t) to be sample haplotype a’s recombination endpoints to the left

and right of a focal location after t generations. Because crossovers to the left

and right of the focal location are independent, the extant width from the an-

cestor at time t is Wa := La + Ra | t ∼ Gamma(2, t). Since the t meioses de-

scend independently to a and b from their most recent common ancestor, the

IBD segments that are shared by a and b are La,b, Ra,b |t ∼ Exponential(2t) and

Wa,b := La,b +Ra,b | t ∼ Gamma(2, 2t).



2.3. The presence of detectable IBD segments

Relative to a focal point, we consider the detection of long IBD segments in

a sample. Let Xa,b := Xa,b(w) = I(Ra,b ≥ w) indicate if the IBD segment to the

right that is shared by sample haplotypes a and b is longer than a detection thresh-

old w Morgans. The binary random variables {Xa,b} are identically distributed

with the same mean E2[Xa,b] and correlated through the unobserved coalescent

tree. We use E2,E3, and E4 and Cov2,Cov3, and Cov4 to denote expected values

and covariances with respect to coalescent trees of two, three, and four sample

haplotypes, respectively.

Our central limit theorem concerns the mean of the IBD segment indicator

random variables. Namely, the detectable IBD rate to the right of a fixed location

is

X̄(n2)
:=

(
n

2

)−1∑
(a,b)

Xa,b. (1)

Let Za,b := Xa,b − E2[Xa,b] be the mean-centered binary random variable, and let

the sum of all except one of these mean-centered random variables be Z−a,b :=∑
(c,d) Zc,d − Za,b. The sum of variances of all IBD segment indicators is

Ω(n2)
:=

∑
(a,b)

Var(Xa,b) =

(
n

2

)
× E2[Xa,b]× (1− E2[Xa,b]). (2)

Finally, the mean-centered and suitably scaled detectable IBD rate to the right of

a locus is

Z̄(n2)
:= Ω

−1/2

(n2)
×
(∑

(a,b)

Xa,b − E2[Xa,b]

)
. (3)

We use the subscript
(
n
k

)
to denote when the mean is over

(
n
k

)
combinations of k

haplotypes.



For IBD segments overlapping a focal location, let Ya,b := I(La,b + Ra,b ≥ w)

and Z̃a,b := Ya,b − E2[Ya,b]. The terms Ȳ(n2)
, Z̃−a,b,

¯̃Z(n2)
, and Ω̃(n2)

, are defined

analogously to X̄(n2)
, Z−a,b, Z̄(n2)

, and Ω(n2)
, respectively. We drop the subscript(

n
2

)
when it is clear that the aggregation is over

(
n
2

)
pairs of haplotypes. Figure 1

provides a conceptual example calculating Ȳ for four sample haplotypes.

We use additional subscript indices when segments are IBD among multiple

haplotypes, which we refer to as multi-way IBD segments. For instance, Ya,b,c

indicates whether the IBD segment around a locus shared between haplotypes

a, b, and c is longer than w Morgans. The corresponding sample mean over
(
n
3

)
haplotype triplets is denoted Ȳ(n3)

, and the related sums, means, and variances

are defined similarly. This notation is important to extend our main central limit

theorem to multi-way IBD segment indicators.

We use the superscript l to denote the sample label when different population

samples are considered. For example, X0
a,b and X1

c,d indicate if the IBD segments to

the right of a locus that are shared between haplotypes a and b in population sam-

ple 0 and c and d in population sample 1 are longer than w Morgans, respectively.

IBD segments around a locus and mean-centered terms are defined analogously

for these extensions. For example, the mean in population sample 0 of 2-way IBD

segment indicators overlapping a focal location is denoted Ȳ 0. This notation is

important to extend our main univariate central limit theorem to a multivariate

Gaussian version.

3. Main central limit theorem

If U1, . . . , Un ∼iid G for some model G, the Lindeberg-Lévy central limit the-

orem says that the standardized sample mean weakly converges to the standard



normal distribution (under some regularity conditions) [34]. The special case of

this result for binary random variables [15] is more closely related to our work.

The result does not apply in our case because the IBD segment indicators {Xa,b}

to the right of a focal point are not independent.

We start by focusing on the mean-centered and suitably scaled detectable IBD

rate Z̄(n2),N
to the right of a focal location, where the subscript N clarifies that

the haplotypes are sampled from a population of constant size N . Our central

limit theorems concern large sample size n and large population size N scaled

by the Morgans detection threshold w. The intuition for our weak law is that

the covariance between IBD segment indicators
∑

(a,b)̸=(c,d) Cov(Xa,b, Xc,d) is small

relative to the sum of the variances of the individual IBD segment indicators Ω(n2)
.

We will use the result referred to as Corollary 2 of Theorem 4 in Chandrasekhar

and Jackson [11] and Corollary 1 of Theorem 1 in Chandrasekhar et al. [12] in our

proof. The sum of covariances between random variables being negligible compared

to the sum of variances of the random variables themselves is the basis of the gen-

eral central limit theorem for dependent data that is given in Chandrasekhar and

Jackson [11] and Chandrasekhar et al. [12]. For univariate identically distributed

binary random variables X1, . . . , Xn, the main condition in Chandrasekhar et al.

[12] and Chandrasekhar and Jackson [11] to satisfy is that
∑n

i=1Var(Xi) is of the

same little “o” order as
∑

i ̸=j Cov(Xi, Xj).

Theorem 3.1. For n and Nw tending to infinity, the mean-centered and suit-

ably scaled detectable IBD rate Z̄(n2),N
to the right of a focal location converges in

distribution to the standard normal distribution when the following are true:

1. Nw = o(n2), scaled population size is small relative to the number of pairs;



2. n = o(Nw), sample size is small relative to scaled population size;

3. E[Za,b × Z−a,b|Z−a,b] ≥ 0 for every Za,b.

Proof. We show that our three conditions are sufficient to apply Corollary 1 in

Chandrasekhar et al. [12]. Figure 2 depicts the general strategy we take to prove

this theorem and our subsequent theorems. Without loss of generality, we derive

integrals over a tree with two sample haplotypes a and b, a tree with three sample

haplotypes a, b, and c, and a tree with four sample haplotypes a, b, c, and d. In

all our expected value calculations, we start by having already integrated over

the recombination endpoints, which gives the survival function at the detection

threshold w for Gamma shape parameters 1 or 2. For example, the first line of

E2[Xa,b] =

∫
S2(w; 1, Nw) · h(t2)dt2, (4)

where S(w;α,Nw) is the survival function of a Gamma random variable with

shape parameter α = 1 and rate parameter Nw, h(t2) is the exponential density

with rate parameter t2, and there are two independent recombination endpoints

greater than w. This calculation simplifies to

E2[Xa,b] =

∫
exp(−2Nt2w) exp(−t2) dt2

= (2Nw + 1)−1

∫
(2Nw + 1) exp(−(2Nw + 1)t2) dt2

= (2Nw + 1)−1 = O((Nw)−1).

(5)

One technique for calculating the integrals in this paper is to rearrange the inte-

grand in the form of exponential densities. It is easy to show that E2[Xa,b] → 0 uni-

formly for large scaled population size (Lemma A.1). The condition Nw = o(n2)



implies that Ω(n2)
→ ∞ (Equations 2 and 5). The assumption in Chandrasekhar

et al. [12] that E[|Za,b|3]/E[|Za,b|2]3/2 is bounded above is true for nondegenerate

Bernoulli random variables [11] (Lemma A.2). Lastly, given n = o(Nw), we show

that

∑
(a,b) ̸=(c,d)

Cov(Xa,b, Xc,d ) =
∑
a,b,c

Cov3(Xa,b, Xa,c) +
∑
a,b,c,d

Cov4(Xa,b, Xc,d)

= o(Ω (n2)
).

(6)

In Appendix A.1, we derive bounds on the integrals Cov3(Xa,b, Xa,c) = O((Nw)−2)

and Cov4(Xa,b, Xc,d) = O((Nw)−3). Next, there are n(n − 1)(n − 2) ∼ n3 combi-

nations of three haplotypes a, b, and c, and there are n(n−1)(n−2)(n−3)/4 ∼ n4

combinations of four haplotypes a, b, c, and d. In asymptotic arguments, the no-

tation ∼ means asymptotic equivalence, not distributed as.

Ω(n2)
∼ n2 ·O((Nw)−1) = o((Nw)2) ·O((Nw)−1) = o(Nw); (7)

∑
a,b,c

Cov3(Xa,b, Xa,c) ∼ n3 ·O((Nw)−2) = o((Nw)3) ·O((Nw)−2) = o(Nw); (8)

∑
a,b,c,d

Cov4(Xa,b, Xc,d) ∼ n4 ·O((Nw)−3) = o((Nw)4) ·O((Nw)−3) = o(Nw). (9)

The covariance between IBD segment indicators (Equations 8 and 9) is controlled

by the covariance within IBD segment indicators (Equation 7).

The first two conditions have appealing interpretations. First, when Nw =

o(n2), the sample size squared is large enough relative to the scaled population

size such that we expect to observe many IBD segments to the right of a focal

location that are longer than the Morgans threshold w (Equation 5). Second, as



Nw increases the marginal covariance terms Cov3(Xa,b, Xa,c) and Cov4(Xa,b, Xc,d)

shrink much faster than Cov2(Xa,b, Xa,b). Thus, when n = o(Nw), we do not

observe many large clusters of haplotypes with IBD segments to the right of a

focal location that are longer than the Morgans threshold w so long as the sample

size is not too large relative to the scaled population size.

These two conditions are unlikely to hold in genetic data from real popula-

tions; however, they provide intuition for when the Gaussian distribution may be

a reasonable approximate model for the IBD rate. Figure S1 shows the limiting

behavior of Nw/n2 and n/(Nw) as sample size n and population size N increase.

For humans, we have genetic data from 10s to 100s of thousands of humans who

come from populations with recent effective sizes on the order of 107, in which case

these values Nw/n2 and n/(Nw) with 0.01 ≤ w ≤ 0.04 are small but far from

zero.

To consider rates of convergence, we fix Nw = C1 · nC2 , where C1 > 0 and

1 < C2 < 2. In this case, the following proposition implies that the best possible

rate of convergence is n1/2. This fastest rate matches the convergence rate of the

Lindeberg-Lévy central limit theorem.

Proposition 3.2. The rate of convergence is min(n−(1−C2), n2−C2). Therefore, the

fastest rate of convergence if n1/2 when C2 = 3/2.

Proof. The conditions Nw = o(n2) and n = o(Nw) in Theorem 3.1 mean that the

following two limits approach 0.

lim
n→∞

Nw/n2 = lim
n→∞

C1 · nC2−2 = 0. (10)



lim
n→∞

n/(Nw) = lim
n→∞

C−1
1 · n1−C2 = 0. (11)

The rate of convergence is the smaller of the two convergence rates in these limits.

The third condition also has an interpretation in the context of population

genetics. Figure S2 provides a diagram that builds intuition for this condition.

The statement says that if the number of detectable IBD segments to the right of

a focal location, except for Xa,b, is less than the expectation E[Xa,b] × (
(
n
2

)
− 1),

then the IBD segment to the right of a focal location that is shared by a and b

is shorter than w Morgans on average, and vice versa if X−a,b is greater than its

expected value. This assumption seems plausible if IBD segments to the right of

a focal location have nonnegative covariance (when Nw is large), which we verify

from the expected value Equations A.3, A.4, A.5, A.7, A.8, A.10, and A.11 in

the proofs of Lemmas A.3 and A.4. Moreover, one intuits that the unobserved

coalescent tree has longer branch lengths when we observe fewer IBD segments

than expected. That is, the posterior distribution of Xa,b|X−a,b is more likely to

come from a tree with long branches than the unconditional distribution of Xa,b is

when X−a,b < E2[Xa,b]×(
(
n
2

)
−1), and vice versa when X−a,b > E2[Xa,b]×(

(
n
2

)
−1).

One can show that the small sample size n = 3 is a pathological example where

the third condition breaks down (Lemma A.6). We do not otherwise calculate

E[Za,b × Z−a,b|Z−a,b] for all Z−a,b, which involves integration over the space of all

coalescent trees and the 2(
n
2)−1 hypercube of 0’s and 1’s. In a simulation study,

we evaluate the third condition via the Monte Carlo method (Appendix A.2),

concluding that this condition likely holds in large samples.

The asymptotic normality of ¯̃Z(n2),N
follows from the same arguments as those



of the proof in Theorem 3.1. We show in Appendix A.1 that Cov2(Ya,b, Ya,b),

Cov3(Ya,b, Ya,c), and Cov4(Ya,b, Yc,d) are O((Nw)−1), O((Nw)−2), and O((Nw)−3),

respectively.

Theorem 3.3. For n and Nw tending to infinity, the mean-centered and suitably

scaled detectable IBD rate ¯̃Z(n2),N
around a locus converges in distribution to the

standard normal distribution when the following are true:

1. Nw = o(n2);

2. n = o(Nw);

3. E[Z̃a,b × Z̃−a,b|Z̃−a,b] ≥ 0 for every Z̃a,b.

All our proofs involve calculating the covariances between detectable IBD seg-

ments around a focal point. Carmi et al. [9] also derive (approximate) covariance

formulas for a particular sample mean that depends on IBD segments longer than

a detection threshold, except they consider IBD segments along the entire genome

(Equation 27 in Carmi et al. [9]). In Appendix A.3, we draw connections between

our covariance formulas and a covariance formula in Carmi et al. [9].

4. Extensions

4.1. Flexible demographic scenarios

We can derive a similar result for varying population sizes. Let N1 = maxt N(t)

and N2 = mint N(t). Compared to varying population sizes N(t), the indicator of

a detectable IBD segment around a focal location has a larger expected value when

sample haplotypes come from a constant population of size N2. Conversely, com-

pared to varying population sizes N(t), the indicator of a detectable IBD segment

around a focal location has a smaller expected value when sample haplotypes come



from a constant population of size N1. We use these facts to establish covariance

bounds for complex demography.

Theorem 4.1. For n, N1w, and N2w tending to infinity, the mean-centered and

suitably scaled detectable IBD rate Z̄(n2),N(t) to the right of a focal location converges

in distribution to the standard normal distribution when the following are true:

1. N1w = o(n2);

2. n = o(N2w);

3. E[Za,b × Z−a,b|Z−a,b] ≥ 0 for every Za,b.

The same conditions imply weak convergence for ¯̃Z(n2),N(t).

Proof. The argument is the same as in Theorem 3.1, except we use N1 and N2 to

upper and lower bound covariance terms.

Ω(n2)
∼ n2 ·O((N2w)

−1) = o(N2w); (12)

∑
a,b,c

Cov3(Xa,b, Xa,c) ∼ n3 ·O((N2w)
−2) = o(N2w); (13)

∑
a,b,c,d

Cov4(Xa,b, Xc,d) ∼ n4 ·O((N2w)
−3) = o(N2w). (14)

Theorem 3.1 is a special case of Theorem 4.1 when N1 = N2. The conditions in

Theorem 4.1 are unlikely to hold in real data examples and are more challenging

to interpret. Note that the proof of Theorem 4.1 does not make use of the entire

curve N(t). The population sizes at the most recent coalescent times have the

greatest impact on the covariance of and between IBD segments around a focal



location. As in Theorem 3.3, we can extend Theorem 4.1 to address IBD segments

overlapping a focal location.

4.2. Multi-way IBD segments

To calculate the probability that an m-way IBD segment indicator is 1, we

integrate over m − 1 coalescent times and the recombination processes at these

common ancestors. Here, we consider m > 2 but m much smaller than the sample

size n. For example, we compute the expected value of the 3-way IBD segment

indicator to the right of a focal location.

E3[Xa,b,c] =

∫
exp(−2Nt2w) exp(−3Nt3w) exp(−t2) exp(−3t3) dt2dt3

= 3(2Nw + 1)−1(Nw + 1)−1 = O((Nw)−2).

(15)

Note in this derivation and that of Equation 5 fall under the general result that

Em[X...m] = O((Nw)−(m−1)), where . . .m denotes m labeled haplotypes. To ob-

serve many m-way IBD segment indicators, we require (Nw)m−1 = o(nm) because

the sums are over
(
n
m

)
∼ nm identically distributed random variables.

Theorem 4.2. For n and Nw tending to infinity and bounded m = O(1), the

mean-centered and suitably scaled detectable IBD rate Z̄(n
m),N

to the right of a focal

location converges in distribution to the standard normal distribution when the

following are true:

1. (Nw)m−1 = o(nm);

2. n = o(Nw);

3. E[Z...m × Z−...m|Z−...m] ≥ 0 for every Z...m.



The weak convergence result holds for ¯̃Z(n
m),N

under the same conditions.

Proof. The proof is again to show that the three conditions are sufficient to apply

Corollary 1 in Chandrasekhar et al. [12]. The strategy is to calculate the relevant

integrals Em[·], . . . ,E2m[·], count the number of occurrences of each covariance

type, and then observe that the condition n = o(Nw) is sufficient to control the

total covariance. In Appendix A.1.2, we give a full proof for the 3-way IBD rate,

from whose covariances and combinatorics it is straightforward to see a pattern as

m increases.

Theorems 3.1 and 3.3 are special cases of Theorem 4.2 when m = 2. We remark

that n = o(Nw), which does not involve m, is a condition shared between Theo-

rems 3.1 and 4.2. Recall that this condition maintains that covariances between

IBD segment indicators are small, which is governed by large scaled population

size Nw.

4.3. Multi-sample IBD rates

We now show that the conditions n = o(Nw) andNw = o(n2) are also sufficient

to apply the multivariate version of the Chandrasekhar et al. [12] central limit

theorem. From the multivariate result, we can derive the asymptotic distribution

of the difference in IBD rates between the disjoint sample sets. This test statistic

may be useful in examining the IBD rates of case individuals with a disease-related

trait versus control individuals without the disease-related trait.

To extend our main result to the IBD rates of different samples from a pop-

ulation, we consider the example of two disjoint sample sets labeled 0 and 1.

Each sample consists of n samples from the same population of size N . Let



(X̄0, X̄1)′ ∈ R2 be the vector of two sample means, where ′ is transpose. The

detectable identity-by-descent segment rates around a locus are denoted (Ȳ 0, Ȳ 1)′,

and the standardized sample means are denoted (Z̄0, Z̄1)′ and ( ¯̃Z0, ¯̃Z1)′. In gen-

eral, we denote X̄1:ℓ := (X̄0, X̄1, . . . , X̄ℓ−1)′ and Ȳ1:ℓ := (Ȳ 0, Ȳ 1, . . . , Ȳ ℓ−1)′ IBD

rates to the right of and overlapping a focal location for ℓ distinct samples of n

haplotypes from N . The (element-wise) standardized versions of these IBD rates

are Z̄1:ℓ and ¯̃Z1:ℓ, respectively. For the lth sample, the mean-centered sums of IBD

segment indicators excluding Z l
a,b and Z̃ l

a,b are denoted Z l
−a,b Z̃

l
−a,b, respectively.

Theorem 4.3. For n and Nw tending to infinity and finite ℓ, the mean-centered

and suitably scaled IBD rates Z̄1:ℓ converge in distribution to the standard normal

distribution Nℓ(0, Iℓ×ℓ) when the following are true:

1. Nw = o(n2);

2. n = o(Nw);

3. E[Z l
a,b × Z l

−a,b|Z l
−a,b] ≥ 0 for every Z l

a,b.

The weak convergence result holds for ¯̃Z1:ℓ under the same conditions.

(The proof is in Appendix A.1.3 using the result from Chandrasekhar et al. [12].)

One important consequence of Theorem 4.3 is that affine transformations of

the sample means column vector are asymptotically normally distributed. In par-

ticular, for the example of two samples and the row vector (1,−1), the difference

in standardized IBD rates around a locus ¯̃Z0 − ¯̃Z1 is asymptotically normally dis-

tributed. When there are ℓ sample sets, for each pair of the ℓ sample means, a row

vector exists such that the dot product gives the difference in their IBD rates.

To apply Corollary 1 of Chandrasekhar et al. [12], we restrict our result to

equally sized samples of n haplotypes. In case-control studies, there may be



samples of unequal sizes n1 and n0. We conjecture that the difference in IBD

rates will still be asymptotically normally distributed, so long as Nw = o(n2
1)

and Nw = o(n2
0) and max(n0, n1) = o(Nw). The conditions Nw = o(n2

1) and

Nw = o(n2
0) maintain that we detect many IBD segments in both samples. The

condition max(n0, n1) = o(Nw) maintains that covariances are vanishing both

in the diagonal terms Cov( ¯̃Z1, ¯̃Z1) and Cov( ¯̃Z0, ¯̃Z0) and the off-diagonal term

Cov( ¯̃Z0, ¯̃Z1). Another limitation is our restriction to distinct sample sets, which

is necessary to make the covariance calculations analytically tractable.

5. Simulation studies

The theoretical results in Sections 3 and 4 rely on asymptotic conditions, not

finite sample conditions. Using simulation, we explore the finite sample empirical

distributions and percentiles of detectable IBD rate-based statistics around a fixed

location. To investigate normality, we require massive simulations to form tens of

thousands of empirical distributions.

We use the algorithm in Temple et al. [55] to simulate detectable IBD segments

overlapping a fixed location. The algorithm first simulates coalescent times, then

simulates recombination endpoints to the left and right of the focal point, and

finally makes as few computations as possible to derive the IBD segments longer

than the detection threshold. The algorithm makes significantly fewer computa-

tions than
(
n
2

)
by ignoring haplotype pairs once either of their segment lengths is

smaller than the detection threshold. Temple et al. [55] show that their method

simulates an IBD segment length distribution similar to existing methods [39, 23]

(Figures S7, S8, and S10 in Temple et al. [55]). They also demonstrate that their

method’s runtime scales approximately linearly with the sample size, whereas the



runtimes of existing methods [39, 23] scale quadratically (Figures 2, 3, and 4, and

Table 2 in Temple et al. [55]).

Despite the speed of the algorithm in simulating as many as
(
n
2

)
IBD segment

lengths, the enormous scope of our simulations takes hundreds of days of computing

time, which we spread across core processing units. If not for the algorithm’s

efficiency, we would be limited in our ability to study the distributional behavior

of the standardized detectable IBD rate ¯̃Z and the difference in IBD rates ¯̃Z1− ¯̃Z0.

We consider sample sizes of 5000 and 10,000 “diploid” individuals. To imple-

ment “diploids”, we use a haploid model with two times the sample size of diploids

(and likewise for demographic models). We consider the same demographic sce-

narios described in Temple et al. [54] and Temple et al. [55]: constant population

sizes ranging from 10,000 to 10 million diploid individuals, as well as examples

of exponential growth phases and a population bottleneck. Both complex demo-

graphic scenarios amount to population sizes ≥ 106 in the most recent tens of

generations and population sizes ≤ 104 more than a few hundred generations ago.

Figure S3 from Temple et al. [55] illustrates some of these demographic scenarios.

5.1. Identity-by-descent rates in finite samples

5.1.1. Constant population sizes

Using the Shapiro-Wilk test [46, 47, 48], we investigate if empirical distributions

of
∑

a,b Ya,b resemble normal distributions as sample size n, population size N , and

the Morgans length threshold w increase. We partition simulated IBD rates into

500 empirical distributions, where each empirical distribution is based on 1000

observations. The null hypothesis is that the empirical distribution of detectable

IBD rates is normally distributed. We report the proportion of times we reject the



null hypothesis at the 0.05 significance level.

Figure 3 shows the proportion of rejected tests for increasing population size

and Morgans length threshold with sample size fixed at 5000 and 10,000 diploid

individuals. The trend is that the proportion of rejected tests decreases with the

increasing population size and Morgans length threshold. Figure S4 shows that

this trend does not depend on the significance level. These observations align with

the condition n = o(Nw) in Theorem 3.1 and Theorem 3.3. The setting for which

the proportion is closest to 0.05 is n = 104, N = 106, and w = 0.04. Interestingly,

for the same sample size and Morgans length threshold, we observe more rejected

tests for N = 107 than for N = 106. This observation aligns with the condition

Nw = o(n2) in Theorem 3.1 and Theorem 3.3 (there are too few observed IBD

segments).

Figure S5 shows the proportion of rejected tests for increasing sample size and

Morgans length threshold with population size fixed at 50,000 and 100,000 diploid

individuals. The proportion of rejected tests decreases slightly as the sample size

increases. This trend may be explained by the fact that sample size n does not

affect the marginal correlations of the IBD segments of three or four specific haplo-

types, which are functions of the scaled population size Nw (Lemmas A.3, A.4, and

A.5). Provided the sample size n is not too large relative to the scaled population

size Nw, the total covariance attributed to Cov3 and Cov4 terms remains small;

meanwhile, increasing the sample size means that we observe more detectable IBD

segments.



5.1.2. Flexible demographic scenarios

Figure S6 shows the proportion of rejected tests for increasing sample size and

Morgans length threshold in the three phases of exponential growth and popu-

lation bottleneck demographic scenarios. For Morgans length threshold greater

than or equal to 0.03, the proportions of rejected tests are less than 0.3 and 0.1

in the three phases of exponential growth and population bottleneck scenarios,

respectively. Consistent with our central limit theorems, we observe a decreasing

trend as we increase the Morgans length threshold, even though the proportions

of rejected tests around 0.3 and 0.1 are not close to the nominal significance level

0.05. Additionally, these proportions are less than their corresponding proportions

in the population of 25,000 diploid individuals (Figure 3).

The conditions on the global extrema of population sizes in Theorem 4.1 are

very stringent. The most recent population sizes have the strongest impact on

the covariances of IBD segment indicators. One interpretation of the results in

Figure S6 is that the detectable IBD rate around a locus may behave like a normal

distribution in demographic scenarios with large recent population sizes, regardless

of the not-so-recent population sizes.

5.1.3. Difference of identity-by-descent rates in two samples

We compute the difference in detectable IBD rates around a locus by splitting

5000 diploid individuals into two equally sized subsets. Then, under different

experimental conditions, we perform 250 Shapiro-Wilk tests based on empirical

distributions of 500 simulations of the test statistic.

Figure S7 shows the proportion of rejected tests for the difference in IBD rates

when the population size or Morgans length threshold increase. At the 0.05 sig-



nificance level, and for all scaled population sizes, between 0.05 and 0.15 percent

of tests are rejected. At the 0.10 significance level, and for all scaled population

sizes, between 0.10 and 0.30 percent of tests are rejected. There is no apparent

trend as either population size or Morgans length threshold increases. One expla-

nation is that any potential overdispersion of ¯̃Z0 and ¯̃Z1, relative to the standard

normal distribution, may be partially balanced out by considering the difference

in rates. Another explanation is the limited power to reject the Shapiro-Wilk null

hypothesis in the scope of our computationally feasible experiments.

Across all simulation experiments in Sections 5.1.1, 5.1.2, and 5.1.3, we reject

the null hypothesis of normality at rates greater than the Type 1 error rate of 0.05,

using the sample sizes and population sizes explored here. These magnitudes are

already quite large relative to existing sample sizes and inferred effective population

sizes. Nevertheless, the trends of increasing sample size and scaled population size

suggest the validity of our central limit theorems.

5.2. Percentiles of the finite sample distributions

Next, we investigate possible explanations for rejecting the nominal significance

levels at elevated rates. We focus on the upper percentiles of the empirical distribu-

tion of our test statistics ¯̃Z and ¯̃Z1− ¯̃Z0. For each batch of simulations, we compute

a mean, a standard deviation, and the mean plus 3 or 4 standard deviations. We

refer to the means plus 3 or 4 standard deviations as upper bounds in the context

of standard normal confidence intervals. Then, we calculate the 99.86501th and

99.99683th percentiles of the test statistic from all of the simulated data for each

experimental condition. For example, if the experimental condition is N = 106,

n = 5000, and w = 0.02, and we generate 500 empirical distributions from 1000



simulations, each mean plus three standard deviations is calculated from 1000

simulations, and the 99.86501th is determined from 500,000 simulations. (These

percentiles correspond to the standard normal quantiles Φ−1(3) and Φ−1(4), where

Φ is the cumulative distribution function of the standard normal random variable.)

We multiply the reciprocal of these 99.86501th and 99.99683th percentiles by their

corresponding estimated upper bounds (means plus 3 or 4 standard deviations),

which we refer to as the relative upper bounds.

5.2.1. The identity-by-descent rate in one sample

Browning and Browning [5], Temple et al. [54], and Temple [53] conduct hy-

pothesis tests to evaluate if the detectable IBD rate ¯̃Z around any specific locus

exceeds a genome-wide mean IBD rate. When our central limit theorems hold, we

can interpret their hypothesis test as a one-sample one-sided z test. Our estimated

upper bounds, which are the mean plus some standard deviations, are intended to

mimic their hypothesis tests [5, 54].

Figures 4 and S8 show the average relative upper bounds by increasing popula-

tion size and Morgans length threshold. The average estimated upper bounds are

less than the simulated percentile threshold for all sample sizes, population sizes,

Morgans length thresholds, and quantiles considered. The average estimated up-

per bound is proportionally closer to the percentile threshold as population size

and Morgans length threshold increase, which is a result consistent with Section

5.1.1 and our central limit theorems.

Figure S6 shows that the average estimated upper bound is also less than the

simulated percentile threshold for all sample sizes and Morgans length thresholds

in the complex demographic scenarios. The average estimated upper bound is



proportionally closer to the percentile threshold for the population bottleneck sce-

nario compared to the three phases of exponential growth scenario, which is the

complex demographic scenario with larger recent population sizes (Figure S3).

These experiments suggest that one reason why we reject the Shapiro-Wilk

null hypothesis at elevated rates is that the test statistic’s upper tail probability

is heavier than that of the standard normal distribution.

5.2.2. Difference of identity-by-descent rates in two samples

Analogous to the excess IBD rate test, the difference in IBD rates ¯̃Z1− ¯̃Z0 may

be used as a hypothesis test for equality of means between two labeled subgroups.

We perform the same experiment, except that we use the difference in IBD rates

as our test statistic.

Figure S9 shows the average relative upper bounds by increasing population

size and Morgans length threshold. We see no trend between the average relative

upper bounds and sample size, population size, and Morgans length threshold,

respectively. Compared to our observation in the one-sample experiment, the

upper tail probability of the test statistic is not noticeably different from that

of the standard normal distribution. These empirical observations are consistent

with our Type 1 error experiment in Section 5.1.3.

5.3. Identity-by-descent graphs around a locus

Clusters of detectable IBD haplotypes overlapping a focal point indicate non-

negligible covariance between segments. These cluster covariances could thus ex-

plain the observed non-normality in finite samples. We form detectable IBD graphs

about a locus by drawing an edge between haplotypes if they share a detectable



IBD segment overlapping a focal point. We define detectable IBD clusters as the

connected components in the detectable IBD graph.

We use the Erdős-Rényi graph as a baseline to study correlations in the IBD

graphs. The Erdős-Rényi graph is a simple network model in which independent

edges between nodes occur with a uniform success probability [17]. We denote a

sparse Erdős-Rényi network as one in which the success probability converges to

0. This contrast analyzes the evolution of independent edges (the Erdős-Rényi

graph) versus weakly correlated edges of a specific nature (the IBD graph around

a focal point).

For sparse Erdős-Rényi graphs, there are theoretical properties associated with

the graph features that we consider in our simulation study. When the success

probability is small, the number of trees of order m weakly converges to a Gaussian

distribution in large networks [18], and trees of order m1 have faster convergence

than trees of order m2 when m1 < m2. Another asymptotic property of sparse

Erdős-Rényi graphs is that almost all nodes are in trees of small order or a sin-

gle “giant” component [18]. We set the uniform success probability in simulated

Erdős-Rényi graphs to be the approximate probability of an IBD segment longer

than the Morgans length threshold (Equation 6 in Palamara et al. [40] for flexible

demographic scenarios and Equation 5 for constant population sizes). Note that

the probability of a detectable IBD segment in Equation 5 goes to 0 as Nw → ∞.

Inspired by the above asymptotic behavior of sparse Erdős-Rényi graphs [18],

we analyze five features of graphs. The number of edges is equivalent to the

number of IBD segments longer than the length threshold. A tree of order m is a

connected component that has m nodes and m − 1 edges. An order m complete

connected component has m nodes and
(
m
2

)
edges between every pair of nodes.



While there is no direct connection between the IBD and Erdős-Rényi graphs, we

are interested in these features to see if there is empirical evidence of asymptotic

behaviors similar to those discussed in Erdős and Rényi [18].

We count the number of trees of order 2 and 3, the number of complete con-

nected components of order 3 or more, and the number of nodes in the largest

connected component. We calculate the average, variance, minimum, and maxi-

mum for each feature over replicate simulations. We also conduct Shapiro-Wilk

tests by splitting the simulated data as described in Section 5.1.1.

Note that the number of trees of order m is not the same as the m-way IBD

rate around a locus. For example, in a complete connected component of four

nodes, there are
(
4
3

)
counts of 3-way detectable IBD. As a result, Theorem 4.2

does not apply to the following experiments on tree orders. However, we might

expect to see some approximately normally distributed data if most components

of degree m are trees.

5.3.1. Comparing to sparse Erdős-Rényi graphs

Figure 5 shows that some empirical distributions of graph features resemble

normal distributions in a sample size of 5000 diploid individuals from a population

of 100,000 diploid individuals. Table 2 compares our summary statistics between

these simulated detectable IBD and sparse Erdős-Rényi graphs. The variance

and maximum number of edges are larger for detectable IBD graphs compared to

sparse Erdős-Rényi graphs, which is a direct consequence of the nonzero covariance

of IBD edges. (In Figure 5, the mean IBD rates are different between the number

of edges in the IBD graph versus the Erdős-Rényi graph. Note that the expected

number of edges should be the same, if not for some approximations [40, 55].)



The proportions of rejected Shapiro-Wilk tests for numbers of trees of order 2 and

connected components of degree 3 or more are close to 0.05 for both detectable IBD

and sparse Erdős-Rényi graphs. While we observe that some limiting distributional

behaviors of small-degree connected components in detectable IBD graphs match

those in sparse Erdős-Rényi graphs, these observations go beyond the theory we

have presented.

5.3.2. Flexible demographic scenarios

Figure S10 shows that the apparent normality of some graph features extends

to the three phases of exponential growth and population bottleneck demographic

scenarios. Table S1 reports that the proportions of rejected hypothesis tests for

numbers of trees of order 2 are close to 0.05 for both demographic scenarios. We

also cannot reject normality for the number of trees of order 3 and the number

of connected components of degree 3 or more in some simulations of the three

phases of exponential growth scenario. These results indicate that the limiting

distributional behaviors of some graph features in detectable IBD graphs around

a locus may be similar for large constant populations and demographic scenarios

with large recent population sizes.

5.3.3. The impact of strong positive selection

Strong directional selection increases the detectable IBD rate around a locus

[54] and the probability of IBD alleles [1], but less is known about how this phe-

nomenon alters the feature distributions of detectable IBD graphs. In a hard se-

lective sweep, a single allele increases in frequency at a rate of change that depends

on a selection coefficient [14, 20, 26, 59]. The selection coefficient parameterizes

the advantage that the sweeping allele has relative to alternative alleles, inasmuch



as the gradient of the allele frequency trajectory is larger when the selection coef-

ficient is larger.

We conduct more simulations of detectable IBD graphs for selection coefficients

between 0.01 and 0.04 and the three phases of exponential growth and population

bottleneck scenarios. Tables S2 and S3 demonstrate multiple trends as the selec-

tion coefficient increases. The apparent normality of the number of trees of order

2 does not noticeably change as we change the selection coefficient. Compared to

our simulations with no selection, we reject normality less often for the number

of trees of order 3 and the number of complete components of order 3 or more.

It may be that the distributional behaviors of these small-degree connected com-

ponents become more apparent under the selection models with more detectable

IBD segments. The primary effect of strong positive selection appears to be the

expansion of the largest detectable IBD cluster, which includes haplotypes carry-

ing a beneficial allele. This idea is a major motivation for the suite of methods

developed in Temple et al. [54].

6. Discussion

In this article, we leverage ideas from coalescent theory and haplotype sharing

to develop statistical theory and motivate methodology in IBD-based inference.

Most notably, we prove a central limit theorem for the detectable IBD rate around

a locus whose regularity conditions have intuitive interpretations in population

genetics. The sample size squared must be large enough such that there are many

IBD segments long enough to be accurately detected by existing methods [5, 21,

49, 61]. The population size must be large enough that there are few to no large

IBD clusters about a locus.



The conceptual framework for these conditions involves envisioning a coalescent

tree with long internal branches, but numerous coalescent events occur near the

leaves. The internal branches are long due to the large population size, and there

are numerous coalescent events near the leaves, resulting from the large sample

size. The large Morgans threshold further decreases the probability of a detectable

IBD segment and the correlations between IBD segment indicators.

The techniques we use might be helpful in other studies involving coalescent

and recombination processes. For instance, to generalize our main central limit

theorem, we take a formulaic approach. First, we derive covariances for a finite

set of classes. Second, we count the number of covariance terms of each class

that occur in the total covariance of the sample mean. Third, we determine a

“little-o” condition such that the sum of covariances of one specific class is asymp-

totically equivalent to the sum of covariances of all the other classes. We use

a particular central limit theorem for dependent data [11, 12], which is derived

using Stein’s moment-based method—a more general technique to demonstrate

weak convergences to Gaussian or non-Gaussian random variables [31, 44, 51, 52].

Future work could use our approach to try to prove central limit theorems for

cohort-averaged IBD sharing [9].

We employ simulation to evaluate the assumptions and validity of our central

limit theorem. Consistent with our conditions, we reject the null hypothesis of

normality less often as sample size and scaled population size increase. In prac-

tice, we find that non-normality is typical in finite samples. Carmi et al. [9] also

observe inflated non-Gaussian tails in the empirical distribution of cohort-averaged

IBD sharing across the entire genome (Figure 6 in Carmi et al. [9]). For our work,

deviation from normality may be unavoidable in real data because of slow conver-



gence rates (Figure S1). In Section 5.3, we indicate that nonnegligible covariance

of the IBD rate may come from the accumulation of IBD clusters. Based on the

tail behavior of simulated distributions, we expect that a one-sample z test for

excess IBD rates may inflate the number of false positives.

Our regularity conditions concern a balance between sample size and scaled

population size that is unlikely to hold in practical settings. In our experiments,

we observe neither a trend between sample size and the proportion of rejected

tests nor between sample size and the relative upper tail probability. We advocate

that the collected sample size should always be as large as is feasible and that the

smallest Morgans length threshold for which IBD segment detection is accurate

should be chosen. For high-quality genetic data on humans, we recommend using

a segment detection threshold of 0.02 or 0.03 Morgans.

Our theoretical results and simulation studies support ongoing methodological

developments based on IBD segments. Existing genome-wide scans for excess

IBD rates [5, 54] or differences in IBD rates between groups [7] lack formal or

exact hypothesis testing frameworks. Motivated in part by this work, Temple [53]

controls the family-wise error rate (FWER) in their selection scan by modeling

the IBD rate process as an Ornstein-Uhlenbeck process, thereby assuming that the

IBD rate is normally distributed at any given spatial position. Consistent with

this work, they demonstrate anti-conservative control of the false discovery rate

(FWER). Combining an FWER control technique [19, 50] with our multivariate

central limit theorem, we indicate that a modification of the Temple [53] method

may apply to a test for equality of detectable IBD rates in case-control studies.

In these examples and others [13, 22, 35] from statistical and population genetics,

assuming reasonable asymptotic models is often vital when adjusting for many



correlated tests.



Data and code availability

We use the Python package https://github.com/sdtemple/isweep for all sim-

ulation studies. This software is freely available under the open-source CC0 1.0

Universal License.
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A.1. Derivations of theoretical results

A.1.1. Theorem 3.1 and its extensions

Lemma A.1. E2[Xa,b] → 0 uniformly as Nw → ∞.

Proof. If Nw > (1/ε − 1)/2, then |E2[Xa,b] − 0| = E2[Xa,b] = (2Nw + 1)−1 < ε.

Choose integer M such that Mw ≥ (1/ε − 1)/2. Thus, for ε > 0, there exists M

such that E2[Xa,b] = (2Nw + 1)−1 < ε for all N ≥ M .

Lemma A.2. Let X ∼ Bernoulli(q) and q ∈ (0, 1). E[|Z|3]/E[|Z|2]3/2 is bounded

above where Z = X − E[X].

Proof.

E[|Z|3] = |1− q|3q + |q|3(1− q)

= q(1− q)((1− q)2 + q2)

< 1.

(A.1)

E[|Z|2]3/2 = (|1− q|2q + |q|2(1− q))3/2

= (q(1− q)(1− q + q))3/2

= (q(1− q))3/2

> 0.

(A.2)

Lemma A.3. Cov3(Za,b, Za,c) ≡ Cov3(Xa,b, Xa,c) = O((Nw)−2).

Proof. Up to reordering three sample haplotypes, there is one possible bifurcating

tree (Figure S11). Sample haplotypes a and b coalesce to a common ancestor, and



their common ancestor coalesces to a common ancestor with sample haplotype c.

We integrate over coalescent time and haplotype segment lengths to bound the

covariance.

E3[Xa,b] = 3

∫
exp(−2Nt3w) exp(−3t3)dt3

= 3(2Nw + 3)−1.

(A.3)

E3[Xa,c] = 3

∫ ∫
exp(−2Nt3w) exp(−2Nt2w) exp(−3t3)) exp(−t2)dt3dt2

= 3(2Nw + 1)−1(2Nw + 3)−1.

(A.4)

E3[Xa,bXa,c] = 3

∫ ∫
exp(−3Nt3w) exp(−2Nt2w) exp(−3t3) exp(−t2)dt3dt2

= (2Nw + 1)−1(Nw + 1)−1.

(A.5)

Cov3(Xa,b, Xa,c) = E3[Xa,bXa,c]− E3[Xa,b] · E3[Xa,c]

= (2Nw + 1)−1((Nw + 1)−1 − 9(2Nw + 3)−2)

= O((Nw)−2).

(A.6)

Lemma A.4. Cov4(Za,b, Zc,d) ≡ Cov4(Xa,b, Xc,d) = O((Nw)−3).

Proof. Up to reordering four sample haplotypes, there are two possible bifurcating

trees (Figure S12). The first tree is as follows: sample haplotypes a and b coalesce

to a common ancestor, then sample haplotypes c and d coalesce to a common

ancestor, and finally those common ancestors coalesce. The covariance of Xa,b and

Xc,d is zero because of independent meioses. We focus instead on the covariance of



Xa,c and Xb,d. We integrate over coalescent time and haplotype segment lengths

to bound the covariance.

E4[Xa,c] = E4[Xb,d]

= 6 · 3
∫ ∫ ∫

exp(−2N(t4 + t3 + t2)w) exp(−(6t4 + 3t3 + t2)) dt4dt3dt2

= 18(2Nw + 6)−1(2Nw + 3)−1(2Nw + 1)−1.

(A.7)

E4[Xa,cXb,d] = 6 · 3
∫ ∫ ∫

exp(−(4Nt4 + 3Nt3 + 2Nt2)w)

exp(−(6t4 + 3t3 + t2))dt4dt3dt2

= 18(4Nw + 6)−1(3Nw + 3)−1(2Nw + 1)−1.

(A.8)

Cov4(Xa,c, Xb,d) = E4[Xa,cXb,d]− E4[Xa,c] · E4[Xb,d] = O((Nw)−3). (A.9)

The second tree is as follows: a and b coalesce to a common ancestor, then

their common ancestor coalesces with c, and finally, the common ancestor of a, b,

and c coalesces with d. It is easy to verify that E4[Xa,cXb,d] is the exact same as

in Equation A.8. Next,

E4[Xa,c] = 6 · 3
∫ ∫ ∫

exp(−2N(t4 + t3)w) exp(−(6t4 + 3t3 + t2)) dt4dt3dt2

= 18(2Nw + 6)−1(2Nw + 3)−1.

(A.10)



E4[Xb,d] = 6 · 3
∫ ∫ ∫

exp(−2N(t4 + t3 + t2)w) exp(−(6t4 + 3t3 + t2)) dt4dt3dt2

= 18(2Nw + 6)−1(2Nw + 3)−1(2Nw + 1)−1.

(A.11)

Because E4[Xa,c] · E4[Xb,d] = O((Nw)−5), the marginal covariance upper bound is

the same as in Equation A.9.

Lemma A.5. The following are true

• Cov2(Z̃a,b, Z̃a,b) ≡ Cov2(Ya,b, Ya,b) = O((Nw)−1);

• Cov3(Z̃a,b, Z̃a,c) ≡ Cov3(Ya,b, Ya,c) = O((Nw)−2);

• Cov4(Z̃a,c, Z̃b,d) ≡ Cov4(Ya,c, Yb,d) = O((Nw)−3).

Proof. We take the same approach as in Lemmas A.3 and A.4, except that the

survival function is that of an Erlang random variable with shape parameter 2.

E2[Ya,b] =

∫
(exp(−2Nt2w) + 2Nt2w exp(−2Nt2w)) exp(−t2)dt2

= (2Nw + 1)−1 +

∫
2Nt2w exp(−(2Nw + 1)t2)dt2

= (2Nw + 1)−1 + 2Nw

∫
t2 exp(−(2Nw + 1)t2)dt2

= (2Nw + 1)−1 + 2Nw(2Nw + 1)−2

= (2Nw + 1)−1(1 + 2Nw(2Nw + 1)−1).

(A.12)

Up to the scaling factor of 1/100 applied to the detection threshold w, Equation

A.12 is equivalent to Equation 19 in Palamara et al. [40]. We use Morgans, whereas



Palamara et al. [40] use centiMorgans as the unit of measurement.

E3[Ya,b] = 3

∫
(exp(−2Nt3w) + 2Nt3w exp(−2Nt3w)) exp(−3t3)dt2

= 3((2Nw + 3)−1 + 2Nw

∫
t3 exp(−(2Nw + 3)t3))

= 3((2Nw + 3)−1 + 2Nw(2Nw + 3)−2)

= 3(2Nw + 3)−1(1 + 2Nw(2Nw + 3)−1).

(A.13)

E3[Ya,c] = 3(2Nw + 3)−1(2Nw + 1)−1

+ 6Nw

∫
(t3 + t2) exp(−(2Nw + 3)t3) exp(−(2Nw + 1)t2)dt3dt2

= 3((2Nw + 3)−1(2Nw + 1)−1 + 2Nw(2Nw + 3)−2(2Nw + 3)−2)

= 3(2Nw + 3)−1(2Nw + 1)−1(1 + 2Nw(2Nw + 3)−1(2Nw + 3)−1).

(A.14)

From Equations A.12, A.13, and A.14, the pattern emerges that the effect of the

convolution of crossover points is to multiply O(1) terms to the marginal expected

values in Equation 5 and Lemmas A.3 and A.4.

Calculating E3[Ya,bYa,c] is more involved. Up to reordering three sample hap-

lotypes, we consider sample haplotypes a and c that coalesce at the most recent

common ancestor of a, b, and c. Then, E3[Ya,c] ≥ E3[Ya,bYa,c], and

Cov3(Ya,b, Ya,c) = E3[Ya,bYa,c]− E3[Ya,b] · E3[Ya,c]

≤ E3[Ya,bYa,c]

≤ E3[Ya,c]

= O((Nw)−2).

(A.15)



Using the same techniques, it is easy to calculate E4[Ya,c] and E4[Yb,d] for the

two different tree shapes and derive the O((Nw)−3) bound for Cov4(Ya,c, Yb,d).

Lemma A.6. For a sample of three haplotypes a, b, and c, when E2[Xa,c] < 1/2,

the conditional expectation E[Za,c × Z−a,c|Z−a,c] ̸≥ 0 for all Z−a,c.

Proof. Define q =: E2[Xa,c], and fix X−a,c = 1.

E[Za,c × Z−a,c|Z−a,c] = E[(Xa,c − q)× (Xa,b +Xb,c − 2q)|Xa,b +Xb,c = 1]

= E[Xa,c × (1− 2q)|Xa,b +Xa,c = 1]− q + 2q2

Because of IBD transitivity, Xa,c = 0 with probability 1. Then, the equation

simplifies to −q(1− 2q) < 0.

A.1.2. Multi-way IBD segments

Proof of Theorem 4.2. We give the general argument for 3-way IBD segment in-

dicators. To begin, we calculate bounds on the relevant integrals Ek[·], . . . ,E2k[·].

Recall that Ek is the expected value with respect to a coalescent tree of k haplo-

types.

E3[Xa,b,cXa,b,c] = O((Nw)−2)

E4[Xa,b,cXa,b,d] = O((Nw)−3)

E5[Xa,b,cXa,d,e] = O((Nw)−4)

E6[Xa,b,cXd,e,f ] = O((Nw)−5).

(A.16)



These are also the covariance bounds because E3[Xa,b,cXa,b,c] ≥ 0 and E3[Xa,b,cXa,b,c] ≥

E3[Xa,b,c]
2 and so on for the other Ek relations.

Next, we take sums over these covariance bounds and substitute in the n =

o(Nw) condition.

Ω(n3)
∼ n3 ·O((Nw)−2)

= o((Nw)3) ·O((Nw)−2)

= o(Nw);

(A.17)

∑
a,b,c,d

Cov4(Xa,b,c, Xa,b,d) ∼ n4 ·O((Nw)−3)

= o((Nw)4) ·O((Nw)−3)

= o(Nw);

(A.18)

∑
a,b,c,d,e

Cov5(Xa,b,c, Xa,d,e) ∼ n5 ·O((Nw)−4)

= o((Nw)5) ·O((Nw)−4)

= o(Nw);

(A.19)

∑
a,b,c,d,e,f

Cov6(Xa,b,c, Xd,e,f ) ∼ n6 ·O((Nw)−5)

= o((Nw)6) ·O((Nw)−5)

= o(Nw).

(A.20)

The covariance within IBD segment indicators Ω(n3)
controls the sum of covariances∑

(a,b,c)̸=(d,e,f) Cov(Xa,b,c, Xd,e,f ).

Form ≥ 3, the total covariance contains marginal covariances Covm, . . . ,Cov2m

of orders O((Nw)−(m−1)), . . . , O((Nw)−(2m−1)) summed over ∼ nm, . . . ,∼ n2m



terms. Thus, under the theorem conditions, the summations over the Covm+1, . . .Cov2m

terms and over the Covm terms are both o(Nw). Using the bounding argument

in Equation A.15, the result extends to IBD segment indicators around a focal

location.

A.1.3. Multi-sample IBD rates

Proof of Theorem 4.3. To consider multiple samples (multiple dimensions in Chan-

drasekhar et al. [12] and Chandrasekhar and Jackson [11]), we formally define an

affinity set. Let the affinity set Ap
i be the subset of random variables that (in-

formally) are highly correlated with the random variable indexed by i in the pth

dimension. The central limit theorems of Chandrasekhar and Jackson [11] and

Chandrasekhar and Jackson [11] insist that the total covariance of random vari-

ables within an affinity set is of the same little “o” order as the covariance of

random variables not in the same affinity set. To apply the Chandrasekhar et al.

[12] results, we choose the affinity sets judiciously that satisfy this condition.

For us, affinity sets are subsets Al
a,b containing the haplotype pair a and b from

sample l such that Cov(X l
a,b, X

l⋆

c,d) is high if the haplotype pair c and d from sample

l⋆ are in the affinity set and low if they are not. Recall that in Section 3 we argue

that
∑

a,bVar(Xa,b) is of the same little “o” order as
∑

(a,b)̸=(c,d)Cov(Xa,b, Xc,d). In

the case of Theorems 3.1, 3.3, and 4.1, there is one dimension, and we choose the

singletons {Xa,b} as the affinity sets in our proofs. In multiple samples, we now

choose the singletons {X l
a,b} as the affinity sets in our proof of Theorem 4.3.

Next, we use the example of two sample means to calculate covariances con-

cretely. Let Ω2×2 be the covariance matrix for the case of two distinct sample sets



labeled 0 and 1.

Ω0,0 =
∑
a,b

∑
(c,d)∈A0

a,b

Cov(X0
a,b, X

0
c,d)

=
∑
a,b

Cov(X0
a,b, X

0
a,b)

∼ n2(Nw)−1.

(A.21)

Ω1,1 =
∑
a,b

∑
(c,d)∈A1

a,b

Cov(X1
a,b, X

1
c,d)

=
∑
a,b

Cov(X1
a,b, X

1
a,b)

∼ n2(Nw)−1.

(A.22)

Ω0,1 =
∑
a,b

∑
(c,d)∈A0

a,b

Cov(X0
a,b, X

1
c,d) = 0. (A.23)

Ω1,0 =
∑
a,b

∑
(c,d)∈A1

a,b

Cov(X1
a,b, X

0
c,d) = 0. (A.24)

Ω0,1 and Ω1,0 concern the sum of covariances of IBD segment indicators within

affinity sets, but in different samples. Because we choose the singletons as our

affinity sets, the affinity set of a haplotype pair a and b in one sample l includes

no haplotype pairs c and d in a different sample l⋆ ̸= l, so these sums are zero.

The term that controls the sum of covariances across affinity sets is the Frobe-



nius norm ||Ω2×2||F . We calculate this norm as

||Ω2×2||F =
√

Ω2
0,0 + 2 · Ω2

0,1 + Ω2
1,1

∼
√
2n4(Nw)−2 + 0

=
√
2n2(Nw)−1.

(A.25)

Under the condition n = o(Nw), Equation A.25 is o(Nw), and under the condition

Nw = o(n2), the variance term ||Ω2×2||F tends to infinity.

The first condition from Corollary 1 in Chandrasekhar et al. [12] is

∑
(l⋆,a,b)̸=(l,c,d)

Cov(X l⋆

a,b, X
l
c,d) = o(||Ω2×2||F ) = o(Nw). (A.26)

First, we compute the sums of covariances of IBD segment indicator types {(a, b), (a, e)},

where a, b, and e are haplotypes from the same sample.

∑
a,b,c

Cov3(X
0
a,b, X

0
a,e) ∼ n3 ·O((Nw)−2) = o(Nw) (A.27)

∑
a,b,c

Cov3(X
1
a,b, X

1
a,e) ∼ n3 ·O((Nw)−2) = o(Nw) (A.28)

Second, we compute the sums of covariances of IBD segment indicator types

{(a, b), (c, d)} where a and b are haplotypes in one sample and c and d are haplo-

types in the other sample.

∑
(a,b),(c,d)

Cov4(X
0
a,b, X

1
c,d) ∼ n4 ·O((Nw)−3) = o(Nw) (A.29)

The big “O” calculations above come from Equations A.3 and A.4.



The second condition in Corollary 1 from Chandrasekhar et al. [12] says that

∑
(l⋆,a,b),(l,c,d)

Cov((X l⋆

a,b)
2, (X l

c,d)
2) = o(||Ω2×2||2F ). (A.30)

This calculation is simplified as

∑
(l⋆,a,b),(l,c,d)

Cov((X l⋆

a,b)
2, (X l

c,d)
2) =

∑
(l⋆,a,b),(l,c,d)

Cov(X l⋆

a,b, X
l
c,d)

= Ω0,0 + Ω1,1 +
∑

(l⋆,a,b)̸=(l,c,d)

Cov(X l⋆

a,b, X
l
c,d)

= o(Nw).

(A.31)

Note that the summation in the second line above is the same as Equation A.26.

We have o(Nw) even smaller than o((Nw)2). Indeed, we have “stacked” the sam-

ples from the same population on top of each other into a “new dimension”, which

explains why we achieve the same o(Nw) result.

We get the general result by extending these calculations for sums and norms

over covariances of two samples to those of ℓ samples. The term in Equation A.26

involves sums of covariances of
(
ℓ
2

)
pairs of samples (e.g., pairing samples split by

a categorical phenotype with labels 0, 1, . . . , ℓ − 1). This term is why we require

finite ℓ, and thereby finite
(
ℓ
2

)
, because in Equation A.25 we have the multiplicative

factor
√
ℓ. Using the bounding argument in Equation A.15, the result extends to

IBD segment indicators around a focal location.



A.2. Verifying an assumption of the central limit theorem

We take a Monte Carlo approach to examine the conditional expectation as-

sumption E[Z̃a,b × Z̃−a,b|Z̃−a,b] ≥ 0 for all Z̃−a,b because E[Z̃a,b|Z̃−a,b] is analyti-

cally intractable. Namely, by replacing the expected value E[Ya,b|Y−a,b] with an

average over a large number of simulations, we assess if E[Ya,b|Y−a,b] ≥ E[Ya,b]

when Y−a,b ≥ (
(
n
2

)
− 1) · E[Ya,b] and vice versa that E[Ya,b|Y−a,b] ≤ E[Ya,b] when

Y−a,b ≤ (
(
n
2

)
− 1) ·E[Ya,b]. (Recall that Za,b is the binary random variable Ya,b after

mean-centering.) The intuition is that if the observed sum Y−a,b is larger than the

expected sum E[Y−a,b] then the held out Ya,b is more likely to be 1 than it would

be if the observed sum equaled the expected sum.

We run the Temple et al. [55] algorithm one hundred and twenty million times,

recording the value of Ya,b and the sum Y−a,b for some fixed haplotype pair a and

b. Then, we calculate the difference between the empirical average Ȳa,b and E[Ya,b],

stratified into eight quantile bins based on the sum Y−a,b. The sample sizes are

limited to two to four hundred diploid individuals to keep runtime modest.

Figure S13 shows the results of this simulation study. For each bin, the average

count is less than and greater than E[Ya,b] when the sum Y−a,b is less than and

greater than E[Y−a,b], respectively. This trend is especially apparent for Y−a,b far

from the mean IBD count (
(
n
2

)
− 1) × E[Ya,b]. These findings provide empirical

evidence that the theorem assumption may be true for moderate to large sample

sizes.



A.3. Covariance of the total fraction of genome shared identical-by-

descent between different pairs

Here, we draw a connection between the covariance of the total fraction of the

genome shared IBD (up to a detection threshold) between two sets of pairs [9] and

our covariance formulas (Equations A.6 and A.15). Let the genome of length L

be evenly split into ⌊L/w⌋ fragments of length w. For simplicity, we assume that

⌊L/w⌋ = L/w := M . Let the total fraction of the genome shared IBD between

haplotypes a and b be

fa,b := L−1

M∑
m=1

w ·Xa,b(sm), (A.32)

where sm is the right end of the mth fragment and Xa,b(sm) is the indicator that

the IBD segment to the right of sm is longer than w. Carmi et al. [9] show that

the covariance between the total fractions of IBD shared between a and b and a

and c is

Cov(fa,b, fa,c) ≈ O(L−1w−1N−2). (A.33)

We now assume that these fragments [sm, sm + w) are independent (which is not

true and therefore means the result below is an approximation). Then, we derive



the same upper bound as Carmi et al. [9]

Cov(fa,b, fa,c) = L−2w2 · Cov
( M∑

m=1

Xa,b(sm),
M∑

m=1

Xa,c(sm)

)

≈ L−2w2

M∑
m=1

Cov(Xa,b(sm), Xa,c(sm))

= L−2w2 ·M ·O((Nw)−2)

= L−2w2 · Lw−1 ·O((Nw)−2)

= O(L−1w−1N−2).

(A.34)



Figures

Figure 1: Example calculation of the detectable IBD rate. IBD segment lengths overlapping a
focal point for sample haplotypes a, b, c, d are shown. The IBD segment indicators (Yi,j ’s) are 1
if their IBD segment lengths (Wi,j ’s) exceed w Morgans and otherwise 0. The detectable IBD
rate Ȳ is the mean of these correlated binary random variables. The detectable IBD rate to the
right of the focal point, X̄, is calculated similarly.



Figure 2: Schematic diagram for the theorem proofs. The strategy is to show that the additional
terms in the total covariance (to the right of the equals sign) are of the same little o(·) order as if
the identically distributed {Ya,b} were independent. The coalescent tree of haplotypes a, b, c, d is
shown. The covariances Cov2(Ya,b, Ya,b), Cov3(Ya,b, Ya,b), and Cov4(Ya,b, Yc,d) for IBD segments
overlapping the focal point are calculated by integrating over haplotype segment lengths and the
branches of the tree contained by the orange and green circles. Upper bounds on the covariances
for IBD segments to the right of the focal point are derived in Equations 5, A.3, and A.4, and
upper bounds on the covariances for IBD segments overlapping the focal point are derived in
Lemma A.5. The asymptotically equivalent numbers of the marginal covariances Cov2(Ya,b, Ya,b),
Cov3(Ya,b, Ya,b), and Cov4(Ya,b, Yc,d) are given below the trees.



Figure 3: Shapiro-Wilk tests for varying population sizes. Line plots show the proportions of
Shapiro-Wilk tests rejected at the significance level of 0.05 (y-axis) for varying population sizes
and a fixed sample size. Each proportion is computed over five hundred tests. Each test is based
on 1000 simulations of the number of identity-by-descent lengths longer than a specified Morgans
length threshold (x-axis). A) The sample size consists of 5000 individuals. B) The sample size
is 10,000. The legends assign colors to different population sizes. The horizontal dotted line is
at 0.05.



Figure 4: Relative upper bound for excess IBD scan. Line plots show the average mean plus four
standard deviations divided by the 99.99683 percentile over two million simulations (y-axis). (The
standard normal cumulative distribution function of four is 0.9999683.) Each average relative
upper bound is computed over 1000 tests. Each test is based on 2000 simulations of the number
of identity-by-descent lengths longer than a specified Morgans length threshold (x-axis). A) The
sample size consists of 5000 diploid individuals. B) The sample size consists of 10,000 diploid
individuals. The legends assign colors to different constant population sizes.



Figure 5: Comparing features between IBD and Erdős-Rényi graphs. Histograms compare the
density of graph features between IBD and Erdős-Rényi graphs. Each histogram summarizes the
results of 125,000 simulations. A) and C) show the number of trees of order 2 and 3, respectively.
B) shows the number of complete components with more than three nodes. D) shows the total
number of edges. The legends assign colors to the IBD and Erdős-Rényi graphs. IBD graphs
are simulated using a demography of 100,000 diploid individuals and a 0.03 Morgans length
threshold. Erdős-Rényi graphs are simulated using the same success probability as in the IBD
graph. The sample size consists of 2000 diploid individuals. Vertical lines show the means.



Tables

Term Definition
n Sample size
N Constant population size
N(t) Population size at time t
a, b, c, d Indices for sample haplotypes
La, Ra Sample a’s endpoints to the left and right of a focal point
La,b,, Ra,b Left and right endpoints that are shared by a and b
Wa,b IBD segment around a focal point that is shared by a and b
w Segment length threshold
Xa,b Indicator that Ra,b exceeds w
Ya,b Indicator that Wa,b exceeds w

Z̄a,b and
¯̃Za,b Standardized sample means of {Xa,b} and {Ya,b}, respectively

Z−a,b and Z̃−a,b Sum over all indicators except Xa,b and Ya,b, respectively
Ω Sum of the variances of all IBD segment indicators
Em Expectation integrated over m haplotypes
Covm Covariance integrated over m haplotypes
Superscript l Denotes the label of a sample set)
Subscript

(
n
m

)
Denotes summation or average over

(
n
m

)
indicators

Subscript N Denotes the constant population size

Table 1: Glossary of mathematical terms. Precise definitions are provided in the main text.



Type Structure Avg Var Min Max S.W.t.
IBD Edges 1,283.42 2,690.85 1,072.00 1,530.00 0.14

Largest 8.09 1.81 5.00 22.00 1.00
Tree-2 483.62 346.48 402.00 569.00 0.05
Tree-3 29.40 28.38 9.00 57.00 0.81

Complete 135.89 112.45 93.00 187.00 0.18
Erdős-Rényi Edges 1,312.68 1,313.06 1,158.00 1,475.00 0.07

Largest 27.02 74.07 11.00 137.00 1.00
Tree-2 353.31 310.32 284.00 434.00 0.08
Tree-3 120.31 109.73 78.00 173.00 0.14

Complete 174.94 146.10 123.00 228.00 0.13

Table 2: Summary statistics of IBD and Erdős-Rényi graphs. Network structures of interest
are the number of edges (Edges), the degree of the largest components (Largest), the number of
trees of order 2 and 3 (Tree-2 and Tree-3), and the number of complete components of degree 3
or more (Complete). Summary statistics are aggregated over 125,000 simulations. Shapiro-Wilk
tests at the significance level 0.05 are performed with 500 replicates for 250 simulations, and
the proportion of rejected null hypotheses is reported as S.W.t. The population size is 100,000
diploid individuals. The sample size consists of 2000 diploid individuals. The Morgans length
threshold is 0.03.



Supplementary figures

Figure S1: Demonstrating the limiting behavior of the first two conditions in Theorems 3.1 and
3.3. The contour plots show the log1 0 values for A) Nw/n2 and B) n/(Nw) as sample size n
(x-axis) and population size N (y-axis) increase (on the log scale). The log1 0 value functions
are clipped between -6 and 2 for visibility. The segment detection threshold, w, is set to 0.01.
The red dot is the largest simulation setting that we consider. The solid and dashed red lines
display results for (Nw)3/2 = n and (Nw)4/3 = n, respectively. Weak convergence occurs when
the results in both A,B) approach the dark blue shades.



Figure S2: Diagram explaining the third condition in Theorems 3.1 and 3.3. This toy example
shows that (right) coalescent trees with longer branch lengths are more probable when we condi-
tion on fewer detected IBD segments, and (left) vice versa, coalescent trees with shorter branch
lengths are more probable when we condition on more detected IBD segments.



Figure S3: Demographic scenarios we consider in simulation studies: A) coalescent time in
generations ago by the log 10 population size, and B) the most recent fifty generations by
population size for examples of exponential growth. The legends specify the color and line style
for each scenario. As opposed to coalescent time used in the main text, we describe the scenarios
forward in time here. Three phases of exponential growth: a population of ancestral size 5000
diploids increases exponentially each generation at rates of 1, 7, and 15 percent starting 300, 60,
and 10 generations ago. Population bottleneck: a population of ancestral size 10,000 diploids
increases exponentially each generation at a rate of 2 percent starting three hundred generations
ago. Otherwise, the demographic scenarios we explore here are populations of constant size
twenty-five and one hundred diploids.



Figure S4: Shapiro-Wilk tests for varying population sizes and significance levels. Line plots
show the proportions of Shapiro-Wilk tests rejected at significance levels A,B) 0.01 and C,D) 0.1
(y-axis) for varying population sizes and a fixed sample size. Each proportion is computed over
five hundred tests. Each test is based on 1000 simulations of the number of identity-by-descent
lengths longer than a specified Morgans length threshold (x-axis). A,C) The sample size is 5000
diploid individuals. B,D) The sample size consists of 10,000 diploid individuals. The legends
assign colors to different population sizes. The horizontal dotted lines are significance levels.



Figure S5: Shapiro-Wilk tests for varying sample sizes. Line plots show the proportions of
Shapiro-Wilk tests rejected at the significance level 0.05 (y-axis) for varying sample sizes and a
fixed population size. Each proportion is computed over five hundred tests. Each test is based
on 1000 simulations of the number of identity-by-descent lengths longer than a specified Morgans
length threshold (x-axis). A) The population size consists of 50,000 diploid individuals. B) The
population size consists of 100,000 diploid individuals. The legends assign colors to different
sample sizes. The horizontal dotted line is at 0.05.



Figure S6: Shapiro-Wilk tests and relative upper tail bounds for complex demography scenarios.
A) Line plots show the proportions of Shapiro-Wilk tests rejected at the sigificance level 0.05 (y-
axis) for the population bottleneck (BN) or three phases of exponential growth (G3) demographic
scenarios and sample sizes of 5000 or 10,000 diploid individuals. Each proportion is computed
over at least six hundred tests. Each test is based on 1000 simulations of the number of identity-
by-descent lengths longer than a specified Morgans length threshold (x-axis). B) Line plots show
the average mean plus four standard deviations divided by the 99.99683 percentile over two
million simulations (y-axis). Plot designs are identical to Figures 3 and 4.



Figure S7: Shapiro-Wilk tests for difference in IBD rates between groups. Line plots show the
proportions of Shapiro-Wilk tests rejected at the significance level 0.05 (y-axis) for increasing
constant population sizes (in thousands). The sample size consists of 5000 diploid individuals.
Each proportion is computed over 250 tests. Each test is based on five hundred simulations
of the difference between groups in IBD rates longer than a specified Morgans length threshold
(x-axis). The significance threshold is either A) 0.05 or B) 0.10, shown as horizontal dotted black
lines.



Figure S8: Relative upper bound for excess IBD scan. Line plots show the average mean plus
three standard deviations divided by the 99.86501 percentile over two million simulations (y-axis).
(The standard normal cumulative distribution function of three is 0.9986501.) Each average
relative upper bound is computed over 1000 tests. Each test is based on 2000 simulations of the
number of identity-by-descent lengths longer than a specified Morgans length threshold (x-axis).
A) The sample size consists of 5000 diploid individuals. B) The sample size consists of 10,000
diploid individuals. The legends assign colors to different constant population sizes.



Figure S9: Relative upper bound for the difference in IBD rates test. Line plots show the average
mean plus A) three or B) four standard deviations, divided by the standard normal corresponding
percentiles, over 125,000 simulations (y-axis). Each average relative upper bound is computed
over 250 tests. Each test is based on five hundred simulations of the number of identity-by-descent
lengths longer than a specified Morgans length threshold (x-axis). The sample size consists of
5000 diploid individuals. The legends assign colors to increasing constant population sizes (in
thousands).



Figure S10: Comparing features between IBD graphs for complex demographic scenarios. His-
tograms show the density of IBD graph features between A-C) the three phases of exponential
growth (G3) and D-F) the population bottleneck (BN) demographic scenarios. Each histogram
is based on at least 600,000 simulations. A,D), B,D), and C,F) show the number of trees of order
2, the number of trees of order 3, and the total number of edges, respectively. The Morgans
length threshold is 0.03. The sample size consists of 5000 diploid individuals.



Figure S11: Illustration of the one possible coalescent tree used to calculate Cov3 terms in
Appendix A.1.



Figure S12: Illustration of the two possible coalescent trees used to calculate Cov4 terms in
Appendix A.1.



Figure S13: Monte Carlo verification of the conditional expectation condition in our central limit
theorem. Bar charts show the difference between the proportion of simulations where two specific
haplotypes share an IBD segment longer than 0.03 Morgans and the true success probability (y-
axis). This statistic is stratified into eight quantile bins based on the total number of long IBD
segments (x¬-axis). Sample sizes are A) two hundred and B) four hundred diploid individuals.
The population size consists of 10,000 diploid individuals. The expectation is 132.78 in A) and
531.78 in B).



Supplementary tables

Type Structure Avg Var Min Max S.W.t.
G3 Edges 3,085.66 12,827.06 2,554.00 3,716.00 0.29

Largest 15.60 9.22 9.00 50.00 1.00
Tree2 757.96 635.16 644.00 880.00 0.08
Tree3 99.71 94.29 54.00 149.00 0.42

Complete 251.55 230.65 185.00 3,118.00 0.14
BN Edges 587.73 694.55 469.00 716.00 0.12

Largest 4.32 0.39 3.00 11.00 1.00
Tree2 473.24 393.50 377.00 574.00 0.09
Tree3 9.66 9.57 0.00 27.00 1.00

Complete 35.53 34.76 11.00 488.00 1.00

Table S1: Summary statistics of IBD graphs for the three phases of exponential growth (G3) and
the population bottleneck (BN) demographic scenarios. Network structures of interest are the
number of edges (Edges), the degree of the largest components (Largest), the number of trees of
order 2 and 3 (Tree-2 and Tree-3), and the number of complete components of degree 3 or more
(Complete). Summary statistics are aggregated over at least 600,000 simulations. Shapiro-Wilk
tests at the significance level 0.05 are performed with 1000 replicates for at least 600 simulations,
and the proportion of rejected null hypotheses is reported as S.W.t. The sample size consists of
5000 diploid individuals. The Morgans length threshold is 0.03.



Type Structure Avg Var Min Max S.W.t.
s = 0.01 Edges 3,407.38 21,526.32 2,916.00 4,143.00 0.36

Largest 24.33 50.80 11.00 89.00 0.97
Tree2 737.77 626.12 636.00 842.00 0.05
Tree3 95.81 92.23 57.00 138.00 0.07

Complete 242.41 215.76 187.00 305.00 0.05
s = 0.02 Edges 4,693.51 140,436.48 3,579.00 8,212.00 0.95

Largest 73.97 1,219.95 22.00 346.00 0.97
Tree2 697.19 588.38 596.00 791.00 0.10
Tree3 86.65 83.70 53.00 126.00 0.09

Complete 220.37 199.88 161.00 281.00 0.10
s = 0.03 Edges 8,242.12 2,283,864.57 4,998.00 37,933.00 0.97

Largest 230.39 12,224.19 39.00 819.00 0.97
Tree2 659.10 565.21 562.00 759.00 0.07
Tree3 78.43 74.69 46.00 119.00 0.11

Complete 199.95 181.88 145.00 254.00 0.06
s = 0.04 Edges 16,486.56 24,295,227.62 7,747.00 72,775.00 0.97

Largest 484.92 38,683.32 89.00 1,229.00 0.97
Tree2 630.68 529.35 546.00 731.00 0.02
Tree3 72.95 70.26 41.00 108.00 0.11

Complete 185.76 167.85 135.00 241.00 0.07

Table S2: Summary statistics of IBD graphs for different selection coefficients and the three
phases of exponential growth demographic scenario. There is directional selection with different
selection coefficients s ∈ [0.01, 0.02, 0.03, 0.4]. The same description of IBD graph features as in
Table 2. Shapiro-Wilk tests at the significance level 0.05 are performed with 250 replicates for
150 simulations, and the proportion of rejected null hypotheses is reported as S.W.t. The sample
size consists of 5000 diploid individuals. The Morgans length threshold is 0.03.



Type Structure Avg Var Min Max S.W.t.
s = 0.01 Edges 612.05 753.44 504.00 736.00 0.06

Largest 4.71 0.75 3.00 14.00 0.97
Tree2 481.32 400.48 397.00 566.00 0.06
Tree3 11.33 11.24 1.00 25.00 0.90

Complete 39.25 37.75 15.00 66.00 0.19
s = 0.02 Edges 722.33 1,349.58 582.00 967.00 0.38

Largest 9.79 20.27 4.00 56.00 0.97
Tree2 497.56 407.99 416.00 581.00 0.03
Tree3 16.38 16.05 3.00 34.00 0.72

Complete 50.79 48.02 24.00 81.00 0.15
s = 0.03 Edges 1,090.00 16,537.54 808.00 2,360.00 0.97

Largest 40.15 456.43 8.00 172.00 0.97
Tree2 501.78 424.81 409.00 592.00 0.06
Tree3 20.80 20.37 4.00 43.00 0.47

Complete 61.55 58.15 33.00 93.00 0.14
s = 0.04 Edges 2,177.58 284,697.22 1,219.00 7,591.00 0.97

Largest 122.45 2,833.45 18.00 354.00 0.97
Tree2 492.44 425.42 412.00 578.00 0.01
Tree3 22.28 21.94 6.00 44.00 0.46

Complete 66.05 63.26 36.00 99.00 0.19

Table S3: Summary statistics of IBD graphs for different selection coefficients and the popu-
lation bottleneck demographic scenario. There is directional selection with different selection
coefficients s ∈ [0.01, 0.02, 0.03, 0.4]. The same description of IBD graph features as in Table
2. Shapiro-Wilk tests at the significance level 0.05 are performed with 250 replicates for 150
simulations, and the proportion of rejected null hypotheses is reported as S.W.t. The sample
size consists of 5000 diploid individuals. The Morgans length threshold is 0.03.
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