Neural Networks with keras

by: Seth Temple

UNIVERSITY of WASHINGTON

keras: "easy-to-use" NN library for python

UNIVERSITY of WASHINGTON

We will use keras over pytorch

- > keras
 - built by a Google engineer
 - on top of existing TensorFlow
 - Easy to quickly develop a working model
 - Better commercial support
- > PyTorch
 - built by Facebook's AI Research lab
 - Easier to debug
 - Better release management

https://www.reddit.com/r/MachineLearning/comments/6bicfo/d keras vs pytorch/

Sequential()

- > For "simple" perceptrons
- > Object-oriented
- > Define the network topology
 - Use .add() to include layers in model
 - Use .pop() to exclude layers in model
 - Debug using .add() combined with .summary()

Layers

> Specify how many nodes are in a layer

> Specify the activation function

- ReLU
- Sigmoid
- Softmax
- > Types
 - Dense()
 - dropout layers (can help with overfitting)
 - pooling layers
 - convolutional layers

Dense()

- > This layer is the most basic layer
- > Dense(32, activation = 'relu')
 - contains 32 nodes
 - uses the rectified linear unit function

Model: "sequential"

Layer (type)	Output	Shape	Param #
Dense_1 (Dense)	(None,	10)	50
Dense_2 (Dense)	(None,	10)	110
logits (Dense)	(None,	3)	33
softmax (Dense)	(None,	3)	12
Total params: 205 Trainable params: 205 Non-trainable params: 0			

- > Run this method after setting up the network!
- > Parameters chosen here influence results of the backpropagation algorithm
- > Specify
 - an optimizer (e.g. Adam)
 - a loss function
 - metrics

.fit()

- > Pass X and Y data
- > Specify
 - epochs
 - > how many times we train our network
 - > can be an important parameter to tune
 - batch_size
 - > a subset of the data
 - > we make gradient updates after each batch
 - > can be an important parameter to tune
 - steps_per_epoch
 - > related to batch_size
 - > # of sample / batch_size

A procedure

- 1. Instantiate a Sequential() model
- 2. Define the network by adding layers
 - a. Verify with .summary()
- 3. Train on local CPU
 - a. .compile()
 - b. .fit()
- 4. Predict using .predict()
 - a. Check on a small sample
 - b. Make plots

A better procedure

- 1. Instantiate a Sequential() model
- 2. Define the network by adding layers
- 3. Train on cloud TPUs or GPUs
 - a. .compile()
 - b. .fit()
- 4. Save model to a .h5 file using .save_weights()
 - a. A neural network is really just a topology with weights
- 5. Load model to local CPU using .load_weights()
- 6. Predict on local CPU using .predict()

This is too easy . . .

Really ?!?

- > passing inputs of the right dimension can be tricky, particularly for CNNs
- > can be difficult to use GPU or TPU accelerators for the first time
- > there are many moving pieces to keep track of
- > also, we dare you to read a stats paper
 - <u>https://arxiv.org/abs/1412.6980</u>
 - https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf
- > and other open questions . . .

Open questions

- > How do we select a network topology?
 - Includes layer types, # of nodes, activations
- > Which optimizer should we use?
 - Also, optimizers have other important parameters to select like the learning rate
- > How long should we train for?

Grid search may be computationally infeasible

Convolutional Neural Networks (CNNs)

UNIVERSITY of WASHINGTON

A high-level description

Yuck! We have to do math . . .

Given two functions *f* and *g*, we define the convolution to be as the following integral transform

$$(f*g)(t) riangleq \int_{-\infty}^{\infty} f(au)g(t- au)\,d au.$$

Refer to the following blog post for visualizations

https://colah.github.io/posts/2014-07-Understanding-Convolutions/

A convolutional layer

- > Filters
 - a matrix transformation
 - define things like edges or colors in an image
- > Stride
 - how we skip across the image applying filters
- > Pooling
 - Dimensionality reduction
 - Combine some cells in matrix together by averaging or taking the max

Refer to these amazing animations !!!

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-net works-the-eli5-way-3bd2b1164a53

Conv2D()

> There are 1D, 2D, and 3D convolutional layers

> Specify the following

- filters
 - > the number of filters
- kernel_size
 - > how big the filter is
- strides
 - > how we move the filter around
- padding
 - > handles output dimensionality

Convolution Exercise

W

UNIVERSITY of WASHINGTON

We will use this kernel and stride 1

(1) Convolve this matrix

(1) Convolve this matrix

Matrix 1 7 -1 2 (onvo)

(2) Convolve this matrix

- > Tell us in chat
 - dimension of the matrix after *
 - value in cell(2, 2) after *

Matrix 2 0 0

(2) Convolve this matrix

(3) Perform max pooling on this matrix

- > Use 2 x 2 max pooling
- > Tell us in the chat
 - dimensions of the matrix after max pooling
 - value in cell (2, 2) after max pooling

Matrix 3 3 0 2

(3) Perform max pooling on this matrix

Matrix 3

Some other fun references

> Data augmentation

- <u>https://nanonets.com/blog/data-augmentation-how-to-use-deep-learning-when-you-have-limited-data-part-2/</u>
- <u>https://www.tensorflow.org/tutorials/images/data_augmentation</u>

> Valid vs same padding

- <u>https://stackoverflow.com/questions/37674306/what-is-the-difference-between-same-and-valid-padding-in-tf-nn-max-pool-of-t</u>

> Backpropagation

- See deeplizard YouTube video series
- <u>https://www.youtube.com/watch?v=XE3krf3CQls&list=PLZbbT5o_s2xq7Lwl2y8_QtvuXZedL6t_QU&index=23</u>

> Convolution vs cross-correlation

- https://en.wikipedia.org/wiki/Convolution
- <u>https://en.wikipedia.org/wiki/Cross-correlation</u>
- <u>https://www.quora.com/Why-do-CNNs-use-convolution-instead-of-cross-correlation</u>
- <u>https://glassboxmedicine.com/2019/07/26/convolution-vs-cross-correlation/</u>

This material is originally made by teaching assistant <u>Seth Temple</u> for the course <u>CSE/STAT 416: Introduction to</u> <u>Machine Learning</u>. This iteration of the course happened in Spring 2020 at the University of Washington and was led by instructor Valentina Staneva.

This material is licensed under a <u>Creative Commons</u> <u>License</u>. Anyone, especially other educators and students, is welcome to use and modify this material with proper citation.