
Seth Temple
sdtemple@uw.edu Notes

BIOST 533
Spring 2020

1 Lectures

This section records key facts presented in lectures in roughly chronological order.

Singular value decomposition. Let X ∈ Rn×p. We can write X = UDVT , where

• U is an orthogonal n× n matrix

• V is an orthogonal p× p matrix

• Dij = 0 for all i 6= j and in non-decreasing order Dii ≥ 0 for all i ≤ min(n, p).

Some facts about SVDs are

• A singular value decomposition is unique up to the signs of columns of U and V

• All matrices have SVDs whereas only symmetric matrices have spectral decompositions

• We can construct compact SVDs.

Subspace. A subspace is contained in a larger vector space and is a vector space itself. Vec-
tor spaces are closed under addition and scalar multiplication. An orthogonal complement of
a subspace of a vector space is the set of all vectors in the vector space orthogonal to every
vector in the subspace. We can decompose Y = YV + YV⊥ . Ŷ ∈ YV and ê ∈ YV⊥ .

Generalized inverse. Let F ∈ Rn×p. Then generalized inverse F− satisfies FF−F = F.

• Every matrix has a generalized inverse.

• A matrix can have more than 1 generalized inverse.

• The inverse of an invertible matrix is unique and is a generalized inverse.

Pseudoinverse. For any matrix F, ∃ a unique Moore-Penrose inverse F+ satisfying

• F+ is a generalized inverse of F

• F is a generalized inverse of F+

• FF+ and F+F are symmetric

This pseudoinverse is often implemented in computer programs.
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Estimability. Consider model Y = Xβ + ε where E[ε|X] = 0. aTβ is estimable if a is in
the row space of X.

• For β̂ = (XTX)−XTY, aT β̂ is unbiased estimator of aTβ. If Var(ε|X) = σ2In, then
Var(aT β̂|X) = σ2aT (XTX)−a (exercise 8).

• aT β̂ is BLUE if aTβ is estimable (Gauss-Markov theorem).

• There are connections to identifiability, defined as θ 6= θ0 =⇒ fθ 6= fθ0 .

Rank deficiency.

• Reduce to full rank.

– Best. Easiest. Most common.

– If X =
[
Z1 Z2

]
, columns of Z1 are linearly independent, and columns of Z2 are

linear combinations of columns of Z1, then β̂ =

[
(ZT

1 Z1)
−1ZT

1 Y
0

]
.

• Use a generalized inverse (β̂ still satisfies normal equations).

• Impose identifiability constraints.

– Hβ = 0s is an identifiability constraint if

1. The rows of H are linearly independent of X

2. rank

([
X
H

])
= p.

– rank(H) = p− rank(X).

– β̂ = (WTW)−1WTZ, where W =

[
X
H

]
, Z =

[
Y
0

]
, and H corresponds to an

identifiability constraint, is a unique solution to constrained least squares.

Consistency. The Gauss-Markov theorem is a result that holds for finite samples. We now
discuss under which conditions we have asymptotically (weakly) consistent β̂.

• An estimator θ̂ is consistent for θ if

lim(P (|θ̂ − θ| < ε)) = 1,

or, equivalently,
lim(P (|θ̂ − θ| ≥ ε)) = 0.

Note that |θ̂ − θ| is a random quantity and P (·) is a deterministic quantity.
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• We often argue consistency using Chebyshev’s inequality:

P

(
|X − µ|

σ
≥ ε

)
≤ σ2

ε2
,

where X is a random variable with E[X] = µ and σ2 < ∞, and this inequality holds
for any ε > 0.

• lim an = a if for all ε > 0 there exists m such that, for all n > m,

|an − a| < ε.

• Suppose we have a linear model with a full rank design matrix. If λmin(X′X) → ∞,

then β̂
p→ β.

Correlated errors.

• Time series, spatially correlated, and longitudinal datasets have correlated observations.

• Random effects describe a class of models where the parameters themselves have a
distribution. Examples include land plots and technical replicates.

• Fixed effects describe a class of models where the parameters are fixed, but unknown.
Examples include experiments with levels, e.g. apply different fertilizer treatments.

• Mixed models refer to models with both fixed and random effects.

• We apply transforms to work with an uncorrelated covariance matrix.

• For C ∈ Rn×n, if C is positive (semi-)definite, then ∃ a positive (semi-)definite symmet-
ric square root denoted C1/2. (We may have to be careful describing the diagonalization
for rank-deficient C.)

• β̂G = (XTΣ−1X)−1XTΣ−1Y when XTΣ−1X is full rank is the least squares solution to

arg min
β

(Y −Xβ)TΣ−1(Y −Xβ)

Central limit theorems.

• Weighted averages are often normally distributed.

• Levy CLT. Let X1, . . . ,Xn be a iid random vectors in Rp.

√
n(X̄n − µ)

d→ Np(0,Σ)
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• Lindeberg-Feller CLT. Let X1, . . . Xn be independent random variables with zero mean
and possibly different variances. Label Sn =

∑n
i=1Xi and σ2

(n) =
∑n

i=1 σ
2
i . Then

Sn/σ(n)
d→ N(0, 1) and max{σ2

i /σ(n)2} → 0 iff the Lindeberg condition holds.

• Lindeberg condition. For all ε > 0

1

σ2
(n)

n∑
i=1

E[X2
i 1|Xi|≥εσ(n)

]→ 0

We usually use ⇐ of the LF-CLT, showing that the Lindeberg condition holds and

concluding Sn/σ(n)
d→ N(0, 1).

• Dominated convergence theorem. If fn → f pointwise and |fn(x)| ≤ g(x) for all n and∫
g < ∞, then

∫
fn →

∫
f . This statement of the theorem is a corollary to DCT in

Shorack (2017).

• Cramér-Wold device. Xn ∈ Rd satisfies Xn
d→ X0 iff aTXn

d→ aTX0 for all a ∈ Rd. We
get a nice corollary for X0 ∼ Nd(0, Id) for all a ∈ Rd such that aTa = 1.

• Asymptotic normality of β̂. Suppose we have our LM setup and full rank X for all n.
max{XT

k (XTX)−1Xk} → 0 implies

(XTX)1/2(β̂ − β)
d→ Np(0, σ

2Ip)

(Observe above that we consider the maximum leverage.)

• Mann-Wald. If g is a continuous function, then Zn
p→ Z implies g(Zn)

p→ g(Z) and

Zn
d→ Z implies g(Zn)

d→ g(Z)

Hypothesis testing.

• For multivariate rejection regions, statisticians may disagree on which rejection region
to use (min volume ellipsoid, min diameter sphere, or box constraints). This motivates
finding a 1-dimensional test statistic.

• Consider Z ∼ Nn(µ,Σ) with rank(Σ) = n. Then

Q = (Z− µ)TΣ−1(Z− µ) ∼ χ2
n

• Suppose we have a linear model with full rank design matrix and some regularity
conditions are satisfied. Then, under H0 : Aβ = c,

(Aβ̂ − c)T (A(XTX)−1AT )−1(Aβ̂ − c)
σ2

d→ χ2
k
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• If we have normal errors and σ2 is known, then a χ2 test is exact (correct for finite n)

• If we have normal errors and σ2 is unknown, then a F-test is exact

– Suppose we have a linear model with normal errors and full rank design matrix.
Then, under H0 : Aβ = c,

F =
(Aβ̂ − c)T (A(XTX)−1AT )−1(Aβ̂ − c)÷ k

s2
d→ Fk,n−p

– Under H0 : βi = 0,
β̂2
i

s2(XTX)−1ii

d→ F1,n−p

and, equivalently, due to the relationship between t- and F -distributions,

β̂i

s
√

(XTX)−1ii
=

β̂i

s.e.(β̂i)

d→ tn−p

– Another framing: let RSSH0 = (Y−Xβ̂H0)
T (Y−Xβ̂H0) under the null hypothesis

restrictions and RSS = (Y−Xβ̂)T (Y−Xβ̂) under no restrictions. We can write

(Aβ̂ − c)T (A(XTX)−1AT )−1(Aβ̂ − c) = RSSH0 −RSS

Therefore, we derive the same asymptotic distribution

(RSSH0 −RSS)÷ k
RSS ÷ (n− p)

d→ Fk,n−p

• If the errors are not normal, the F-test is asymptotically the same as the χ2 test (up

to constant multiplier). We achieve this result via a fact that k × F d→ χ2
k

• Suppose we have a linear model with normal errors and full rank design matrix. Then

(n− p)s2

σ2
∼ χ2

n−p

where s2 = (Y −Xβ̂)T (Y −Xβ̂)/(n− p)).

• s2 and β̂ are independent, using

– Z ∼ Nn if and only if aTZ ∼ N1 for all non-zero vectors a

• If U ∼ χ2
m and V ∼ χ2

n, then
U/m

V/n
∼ Fm,n
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Heteroscedasticity. (Homo)heteroscedasticity means that the variance of Y does (not)
depend on X. Heteroscedasticity is the more reasonable assumption to make, but this com-
plicates the math. The most common approach to assume heteroscedasticty is via a weight
matrix W. Let Y = Xβ + Wε.

• Var(β̂) = ((XTX)−1XTW2X(XTX)−1)−1.

– The true variance is often larger than model-based variances under the homoscedas-
tic assumption

• Using Cramér-Wold device, LF-CLT, and DCT, and assuming the max leverage with
respect to WX goes to zero, we achieve

(Var(β̂))−1/2(β̂ − β)
d→ N(0, Ip)

• Ignoring heteroscedasticity can result in too small of confidence intervals, misleading
inference, etc.

– Variance-stabilizing transformations are often used to handle this

• Huber-White sandwich estimation is often used to determine unknown W

Experimental Design. Orthogonal designs are nice because estimates for β̂i do not change
when we include a new orthogonal covariate and the variance of β̂i is minimized (optimal).
An orthogonal design is one where the covariates in the design matrix X are orthogonal.
Under such an assumption,

• β̂i =
xT
i Y

xT
i xi

• Var(β̂i) = σ2

xT
i xi

which is the variance bound!

• Amy suggested an orthogonal design to a collaborator for experiment on gene expression
of regenerative worms

• We may desire to add another observation to the experiment that is Xn+1 = c · vmin

where vmin is the eigenvector corresponding to the smallest eigenvalue, if we have the
resources (and can play god)

Blocking

• Including relevant covariates in the model

• (often) under the control of the experimenter

6



Seth Temple
sdtemple@uw.edu Notes

BIOST 533
Spring 2020

2 Exercises

This section records the facts presented the in-class exercises in chronological order.

1. Any solution β̂ to arg min
β

(Y −Xβ)T (Y −Xβ) satisfies that XTXβ̂ = XTY.

2. Let A ∈ Rs×s, rank(A) = s, and B ∈ Rs×t. Then, rank(AB) = rank(B).

3. (a) The columns of U in the SVD of X are the eigenvectors of XXT .

(b) The columns of V in the SVD of X are the eigenvectors of XTX.

(c) The diagonal elements of D in the SVD of X are the square roots of the eigenvalues
of XTX and XXT .

4. (a) rank(X′X) = rank(X). (Full rank X is a sufficient condition for LSE to be unique.)

(b) If rank(X) = p ≤ n, then X′X is positive definite. (Full rank X is sufficient
condition for SSE to be strictly convex.)

5. Let PX be the projection matrix onto X where X ∈ Rn×p.

(a) PX can be written UAU′ using SVD.

(b) PX has eigenvalue 1 of multiplicity p and eigenvalue 0 of multiplicity n− p.
(c) rank(PX) = p.

6. Every matrix has a generalized inverse.

7. If G and H are generalized inverses of X′X, then XGX′ = XHX′.

8. For Y = Xβ + ε and ε|X ∼ (0, σ2In), if aTβ is estimable, then var(aT β̂|X) =
σ2aT (XTX)−a where β̂ = (XTX)−XTY.

9. Gauss-Markov theorem for full rank X. aT β̂ is unique UMVUE for aTβ.

10. Using Chebyshev’s inequality, we show that

P (|Yn − µ| ≥ δ) ≤ σ2
n

δ2

where Y1, . . . , Yn is a sequence of random variables with indexed variances and common
expectation. If limσ2

n = 0, then Yn
p→ µ. We use this exercise to say that, if our

estimator’s variance goes to zero as the sample gets asymptotically large, then the
estimator is asymptotically (weakly) consistent for µ.

11. Suppose Y ∼ (Xβ,Σ) where Σ is full rank. Then Σ−1/2(Y −Xβ) ∼ (0n, In)
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12. If we have full rank X and Σ, the OLS and GLS estimates are both unbiased estimators
of β. They often have different variances. In this case, the Gauss Markov theorem gives
that aT β̂G is BLUE for aTβ.

13. Reflect on when least squares are normally distributed

14. We have our usual OLS setup with full rank X and the max leverage converging to 0.
Under H0 : Aβ = c and the rank of A is k,

(Aβ̂ − c)T (A(XTX)−1AT )−1(Aβ̂ − c)
σ2

d→ χ2
k

15. The setup is the same as above, except we have normal errors and a finite sample.
Instead,

(Aβ̂ − c)T (A(XTX)−1AT )−1(Aβ̂ − c)
σ2

∼ χ2
k

That is, χ2 is an exact test.

16. We prefer orthogonal designs

17. Some derivations on the way to the asymptotic distribution for ordinary least squares
in the heteroscedastic case
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3 Homeworks

This section records the facts presented in homeworks in roughly chronological order.

1. For any matrix A, AA′ = 0 implies A = 0.

2. Projection matrices.

(a) For any matrix A, PA = A(A′A)−A′ is a projection matrix onto C(A).

(b) PAA = A.

(c) rank(PA) = rank(A).

3. Given two OLS estimates of β, Xβ̂1 = Xβ̂2.

4. Consider models E[Y|X] = 1α0 +Wα and E[Y|X] = 1β0 +Xβ. Suppose W, a column
centered version of design matrix X, has full rank p < n. Then least squares estimates
of α and β are unique and α̂ = β̂.

5. Let P be a n× n projection matrix and R be a n× n orthogonal matrix.

• P is positive semidefinite.

• If rank(P) = r, then P has eigenvalue 1 with multiplicity r and eigenvalue 0 with
multiplicity n− r.
• R has real eigenvalues ±1.

6. The (unique) least squares estimate is unbiased when the design matrix is full rank.

7. In simple linear regression, β̂0 and β̂1 are uncorrelated if and only if x̄ = 0.

8. (Seber and Lee page 64.) Rank-deficient X implies that a least squares estimator
cannot be unbiased for β. Moreover, a least squares estimate is of the form CYn where
C ∈ Rp×n and XTXC = XT .

9. The sum of the leverages equals the rank of the design matrix. Moreover, leverages lie
in between 0 and 1 inclusive.

10. There are more ways to show that the Lindeberg condition holds besides just using the
dominated convergence theorem. Sometimes inequalities like Hölder’s and Markov’s
can be useful.

11. For Y = Xβ + ε and ε ∼ (0, σ2),

s2 =
(Y −Xβ̂)T (Y −Xβ̂)

n− p
p→ σ2
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4 Potpourri

• Suppose AX′X−BX′X = 0. Then AX′ = BX′.

• trace(P) = rank(P) for any projection matrix P.

• Expected value of the residuals is 0.

• For our standard LM setup, 1
n−rank(X)

(Y−Xβ̂)T (Y−Xβ̂) is unbiased estimator of σ̂2.

• The only full rank projection matrix is the identity matrix.

• E[ZTAZ] = trace(AVar(Z)) + E[Z]TAE[Z].

• If Y ∼ N(Xβ, σ2In), then

– β̂ is the MLE for β

– β̂ is unbiased for β

– β̂ is efficient, i.e. achieves CR lower bound

– F -test is UMP level α test

• Hölder’s inequality. For p, q > 1 and 1
p

+ 1
q

= 1,

E[|XY |] ≤ E[|X|p]
1
p × E[|Y |q]

1
q

• Cauchy-Schwarz inequality.

E[XY ]2 ≤ E[|XY |]2

≤ E[|X|2]× E[|Y |2]
= E[X2]× E[Y 2]

• Markov inequality. µ(|X| > λ) ≤ E[|X|r]
λr

for all λ > 0. This inequality provides upper
bounds on probabilities.
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