1 Lectures

This section records key facts presented in lectures in roughly chronological order.
Singular value decomposition. Let $\mathbf{X} \in \mathbb{R}^{n \times p}$. We can write $\mathbf{X}=\mathbf{U D V}^{T}$, where

- \mathbf{U} is an orthogonal $n \times n$ matrix
- \mathbf{V} is an orthogonal $p \times p$ matrix
- $D_{i j}=0$ for all $i \neq j$ and in non-decreasing order $D_{i i} \geq 0$ for all $i \leq \min (n, p)$.

Some facts about SVDs are

- A singular value decomposition is unique up to the signs of columns of \mathbf{U} and \mathbf{V}
- All matrices have SVDs whereas only symmetric matrices have spectral decompositions
- We can construct compact SVDs.

Subspace. A subspace is contained in a larger vector space and is a vector space itself. Vector spaces are closed under addition and scalar multiplication. An orthogonal complement of a subspace of a vector space is the set of all vectors in the vector space orthogonal to every vector in the subspace. We can decompose $\mathbf{Y}=\mathbf{Y}_{\mathcal{V}}+\mathbf{Y}_{\mathcal{V}^{\perp}} . \hat{\mathbf{Y}} \in \mathbf{Y}_{\mathcal{V}}$ and $\hat{\mathbf{e}} \in \mathbf{Y}_{\mathcal{V}^{\perp}}$.

Generalized inverse. Let $\mathbf{F} \in \mathbb{R}^{n \times p}$. Then generalized inverse \mathbf{F}^{-}satisfies $\mathbf{F F}^{-} \mathbf{F}=\mathbf{F}$.

- Every matrix has a generalized inverse.
- A matrix can have more than 1 generalized inverse.
- The inverse of an invertible matrix is unique and is a generalized inverse.

Pseudoinverse. For any matrix \mathbf{F}, \exists a unique Moore-Penrose inverse \mathbf{F}^{+}satisfying

- \mathbf{F}^{+}is a generalized inverse of \mathbf{F}
- \mathbf{F} is a generalized inverse of \mathbf{F}^{+}
- $\mathbf{F F}^{+}$and $\mathbf{F}^{+} \mathbf{F}$ are symmetric

This pseudoinverse is often implemented in computer programs.

Estimability. Consider model $\mathbf{Y}=\mathbf{X} \beta+\varepsilon$ where $\mathbb{E}[\varepsilon \mid \mathbf{X}]=\mathbf{0} . a^{T} \beta$ is estimable if a is in the row space of \mathbf{X}.

- For $\hat{\beta}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-} \mathbf{X}^{T} \mathbf{Y}, a^{T} \hat{\beta}$ is unbiased estimator of $a^{T} \beta$. If $\operatorname{Var}(\varepsilon \mid \mathbf{X})=\sigma^{2} \mathbf{I}_{n}$, then $\operatorname{Var}\left(a^{T} \hat{\beta} \mid \mathbf{X}\right)=\sigma^{2} a^{T}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-} a($ exercise 8$)$.
- $a^{T} \hat{\beta}$ is BLUE if $a^{T} \beta$ is estimable (Gauss-Markov theorem).
- There are connections to identifiability, defined as $\theta \neq \theta_{0} \Longrightarrow f_{\theta} \neq f_{\theta_{0}}$.

Rank deficiency.

- Reduce to full rank.
- Best. Easiest. Most common.
- If $\mathbf{X}=\left[\begin{array}{ll}\mathbf{Z}_{1} & \mathbf{Z}_{2}\end{array}\right]$, columns of \mathbf{Z}_{1} are linearly independent, and columns of \mathbf{Z}_{2} are linear combinations of columns of \mathbf{Z}_{1}, then $\hat{\beta}=\left[\begin{array}{c}\left(\mathbf{Z}_{1}^{T} \mathbf{Z}_{1}\right)^{-1} \mathbf{Z}_{1}^{T} \mathbf{Y} \\ \mathbf{0}\end{array}\right]$.
- Use a generalized inverse ($\hat{\beta}$ still satisfies normal equations).
- Impose identifiability constraints.
$-\mathbf{H} \beta=\mathbf{0}_{s}$ is an identifiability constraint if

1. The rows of \mathbf{H} are linearly independent of \mathbf{X}
2. $\operatorname{rank}\left(\left[\begin{array}{l}\mathbf{X} \\ \mathbf{H}\end{array}\right]\right)=p$.
$-\operatorname{rank}(\mathbf{H})=p-\operatorname{rank}(\mathbf{X})$.
$-\hat{\beta}=\left(\mathbf{W}^{T} \mathbf{W}\right)^{-1} \mathbf{W}^{T} \mathbf{Z}$, where $\mathbf{W}=\left[\begin{array}{l}\mathbf{X} \\ \mathbf{H}\end{array}\right], \mathbf{Z}=\left[\begin{array}{l}\mathbf{Y} \\ \mathbf{0}\end{array}\right]$, and \mathbf{H} corresponds to an identifiability constraint, is a unique solution to constrained least squares.

Consistency. The Gauss-Markov theorem is a result that holds for finite samples. We now discuss under which conditions we have asymptotically (weakly) consistent $\hat{\beta}$.

- An estimator $\hat{\theta}$ is consistent for θ if

$$
\lim (P(|\hat{\theta}-\theta|<\varepsilon))=1
$$

or, equivalently,

$$
\lim (P(|\hat{\theta}-\theta| \geq \varepsilon))=0
$$

Note that $|\hat{\theta}-\theta|$ is a random quantity and $P(\cdot)$ is a deterministic quantity.

- We often argue consistency using Chebyshev's inequality:

$$
P\left(\frac{|X-\mu|}{\sigma} \geq \varepsilon\right) \leq \frac{\sigma^{2}}{\varepsilon^{2}}
$$

where X is a random variable with $\mathbb{E}[X]=\mu$ and $\sigma^{2}<\infty$, and this inequality holds for any $\varepsilon>0$.

- $\lim a_{n}=a$ if for all $\varepsilon>0$ there exists m such that, for all $n>m$,

$$
\left|a_{n}-a\right|<\varepsilon .
$$

- Suppose we have a linear model with a full rank design matrix. If $\lambda_{\min }\left(\mathbf{X}^{\prime} \mathbf{X}\right) \rightarrow \infty$, then $\hat{\beta} \xrightarrow{p} \beta$.

Correlated errors.

- Time series, spatially correlated, and longitudinal datasets have correlated observations.
- Random effects describe a class of models where the parameters themselves have a distribution. Examples include land plots and technical replicates.
- Fixed effects describe a class of models where the parameters are fixed, but unknown. Examples include experiments with levels, e.g. apply different fertilizer treatments.
- Mixed models refer to models with both fixed and random effects.
- We apply transforms to work with an uncorrelated covariance matrix.
- For $\mathbf{C} \in \mathbb{R}^{n \times n}$, if \mathbf{C} is positive (semi-)definite, then \exists a positive (semi-)definite symmetric square root denoted $\mathbf{C}^{1 / 2}$. (We may have to be careful describing the diagonalization for rank-deficient C.)
- $\hat{\beta}_{G}=\left(\mathbf{X}^{T} \Sigma^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \Sigma^{-1} \mathbf{Y}$ when $\mathbf{X}^{T} \Sigma^{-1} \mathbf{X}$ is full rank is the least squares solution to

$$
\underset{\beta}{\arg \min }(\mathbf{Y}-\mathbf{X} \beta)^{T} \Sigma^{-1}(\mathbf{Y}-\mathbf{X} \beta)
$$

Central limit theorems.

- Weighted averages are often normally distributed.
- Levy CLT. Let $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}$ be a iid random vectors in \mathbb{R}^{p}.

$$
\sqrt{n}\left(\overline{\mathbf{X}}_{n}-\mu\right) \xrightarrow{d} N_{p}(\mathbf{0}, \Sigma)
$$

- Lindeberg-Feller CLT. Let $X_{1}, \ldots X_{n}$ be independent random variables with zero mean and possibly different variances. Label $S_{n}=\sum_{i=1}^{n} X_{i}$ and $\sigma_{(n)}^{2}=\sum_{i=1}^{n} \sigma_{i}^{2}$. Then $S_{n} / \sigma_{(n)} \xrightarrow{d} N(0,1)$ and $\max \left\{\sigma_{i}^{2} / \sigma_{(n)^{2}}\right\} \rightarrow 0$ iff the Lindeberg condition holds.
- Lindeberg condition. For all $\varepsilon>0$

$$
\frac{1}{\sigma_{(n)}^{2}} \sum_{i=1}^{n} \mathbb{E}\left[X_{i}^{2} \mathbf{1}_{\left|X_{i}\right| \geq \varepsilon \sigma_{(n)}}\right] \rightarrow 0
$$

We usually use \Leftarrow of the LF-CLT, showing that the Lindeberg condition holds and concluding $S_{n} / \sigma_{(n)} \xrightarrow{d} N(0,1)$.

- Dominated convergence theorem. If $f_{n} \rightarrow f$ pointwise and $\left|f_{n}(x)\right| \leq g(x)$ for all n and $\int g<\infty$, then $\int f_{n} \rightarrow \int f$. This statement of the theorem is a corollary to DCT in Shorack (2017).
- Cramér-Wold device. $\mathbf{X}_{n} \in \mathbb{R}^{d}$ satisfies $\mathbf{X}_{n} \xrightarrow{d} \mathbf{X}_{0}$ iff $a^{T} \mathbf{X}_{n} \xrightarrow{d} a^{T} \mathbf{X}_{0}$ for all $a \in \mathbb{R}^{d}$. We get a nice corollary for $\mathbf{X}_{0} \sim N_{d}\left(\mathbf{0}, \mathbf{I}_{d}\right)$ for all $a \in \mathbb{R}^{d}$ such that $a^{T} a=1$.
- Asymptotic normality of $\hat{\beta}$. Suppose we have our LM setup and full rank \mathbf{X} for all n. $\max \left\{X_{k}^{T}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} X_{k}\right\} \rightarrow 0$ implies

$$
\left(\mathbf{X}^{T} \mathbf{X}\right)^{1 / 2}(\hat{\beta}-\beta) \xrightarrow{d} N_{p}\left(0, \sigma^{2} \mathbf{I}_{p}\right)
$$

(Observe above that we consider the maximum leverage.)

- Mann-Wald. If g is a continuous function, then $Z_{n} \xrightarrow{p} Z$ implies $g\left(Z_{n}\right) \xrightarrow{p} g(Z)$ and $Z_{n} \xrightarrow{d} Z$ implies $g\left(Z_{n}\right) \xrightarrow{d} g(Z)$

Hypothesis testing.

- For multivariate rejection regions, statisticians may disagree on which rejection region to use (min volume ellipsoid, min diameter sphere, or box constraints). This motivates finding a 1 -dimensional test statistic.
- Consider $\mathbf{Z} \sim N_{n}(\mu, \Sigma)$ with $\operatorname{rank}(\Sigma)=n$. Then

$$
Q=(\mathbf{Z}-\mu)^{T} \Sigma^{-1}(\mathbf{Z}-\mu) \sim \chi_{n}^{2}
$$

- Suppose we have a linear model with full rank design matrix and some regularity conditions are satisfied. Then, under $H_{0}: \mathbf{A} \beta=c$,

$$
\frac{(\mathbf{A} \hat{\beta}-c)^{T}\left(\mathbf{A}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{A}^{T}\right)^{-1}(\mathbf{A} \hat{\beta}-c)}{\sigma^{2}} \xrightarrow{d} \chi_{k}^{2}
$$

- If we have normal errors and σ^{2} is known, then a χ^{2} test is exact (correct for finite n)
- If we have normal errors and σ^{2} is unknown, then a F-test is exact
- Suppose we have a linear model with normal errors and full rank design matrix. Then, under $H_{0}: \mathbf{A} \beta=c$,

$$
F=\frac{(\mathbf{A} \hat{\beta}-c)^{T}\left(\mathbf{A}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{A}^{T}\right)^{-1}(\mathbf{A} \hat{\beta}-c) \div k}{s^{2}} \xrightarrow{d} F_{k, n-p}
$$

- Under $H_{0}: \beta_{i}=0$,

$$
\frac{\hat{\beta}_{i}^{2}}{s^{2}\left(\mathbf{X}^{T} \mathbf{X}\right)_{i i}^{-1}} \xrightarrow{d} F_{1, n-p}
$$

and, equivalently, due to the relationship between t - and F-distributions,

$$
\frac{\hat{\beta}_{i}}{s \sqrt{\left(\mathbf{X}^{T} \mathbf{X}\right)_{i i}^{-1}}}=\frac{\hat{\beta}_{i}}{\text { s.e. }\left(\hat{\beta}_{i}\right)} \xrightarrow{d} t_{n-p}
$$

- Another framing: let $R S S_{H_{0}}=\left(\mathbf{Y}-\mathbf{X} \hat{\beta}_{H_{0}}\right)^{T}\left(\mathbf{Y}-\mathbf{X} \hat{\beta}_{H_{0}}\right)$ under the null hypothesis restrictions and $R S S=(\mathbf{Y}-\mathbf{X} \hat{\beta})^{T}(\mathbf{Y}-\mathbf{X} \hat{\beta})$ under no restrictions. We can write

$$
(\mathbf{A} \hat{\beta}-c)^{T}\left(\mathbf{A}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{A}^{T}\right)^{-1}(\mathbf{A} \hat{\beta}-c)=R S S_{H_{0}}-R S S
$$

Therefore, we derive the same asymptotic distribution

$$
\frac{\left(R S S_{H_{0}}-R S S\right) \div k}{R S S \div(n-p)} \xrightarrow{d} F_{k, n-p}
$$

- If the errors are not normal, the F-test is asymptotically the same as the χ^{2} test (up to constant multiplier). We achieve this result via a fact that $k \times F \xrightarrow{d} \chi_{k}^{2}$
- Suppose we have a linear model with normal errors and full rank design matrix. Then

$$
\frac{(n-p) s^{2}}{\sigma^{2}} \sim \chi_{n-p}^{2}
$$

where $\left.s^{2}=(\mathbf{Y}-\mathbf{X} \hat{\beta})^{T}(\mathbf{Y}-\mathbf{X} \hat{\beta}) /(n-p)\right)$.

- s^{2} and $\hat{\beta}$ are independent, using
- $\mathbf{Z} \sim N_{n}$ if and only if $a^{T} \mathbf{Z} \sim N_{1}$ for all non-zero vectors a
- If $U \sim \chi_{m}^{2}$ and $V \sim \chi_{n}^{2}$, then

$$
\frac{U / m}{V / n} \sim F_{m, n}
$$

Heteroscedasticity. (Homo)heteroscedasticity means that the variance of \mathbf{Y} does (not) depend on \mathbf{X}. Heteroscedasticity is the more reasonable assumption to make, but this complicates the math. The most common approach to assume heteroscedasticty is via a weight matrix \mathbf{W}. Let $Y=\mathbf{X} \beta+\mathbf{W} \varepsilon$.

- $\operatorname{Var}(\hat{\beta})=\left(\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{W}^{2} \mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}\right)^{-1}$.
- The true variance is often larger than model-based variances under the homoscedastic assumption
- Using Cramér-Wold device, LF-CLT, and DCT, and assuming the max leverage with respect to WX goes to zero, we achieve

$$
(\operatorname{Var}(\hat{\beta}))^{-1 / 2}(\hat{\beta}-\beta) \xrightarrow{d} N\left(\mathbf{0}, \mathbf{I}_{p}\right)
$$

- Ignoring heteroscedasticity can result in too small of confidence intervals, misleading inference, etc.
- Variance-stabilizing transformations are often used to handle this
- Huber-White sandwich estimation is often used to determine unknown \mathbf{W}

Experimental Design. Orthogonal designs are nice because estimates for $\hat{\beta}_{i}$ do not change when we include a new orthogonal covariate and the variance of $\hat{\beta}_{i}$ is minimized (optimal). An orthogonal design is one where the covariates in the design matrix \mathbf{X} are orthogonal. Under such an assumption,

- $\hat{\beta}_{i}=\frac{\mathbf{x}_{i}^{T} \mathbf{Y}}{\mathbf{x}_{i}^{T} \mathbf{x}_{i}}$
- $\operatorname{Var}\left(\hat{\beta}_{i}\right)=\frac{\sigma^{2}}{\mathbf{x}_{i}^{T} \mathbf{x}_{i}}$ which is the variance bound!
- Amy suggested an orthogonal design to a collaborator for experiment on gene expression of regenerative worms
- We may desire to add another observation to the experiment that is $\mathbf{X}_{n+1}=c \cdot \mathbf{v}_{\text {min }}$ where $\mathbf{v}_{\text {min }}$ is the eigenvector corresponding to the smallest eigenvalue, if we have the resources (and can play god)

Blocking

- Including relevant covariates in the model
- (often) under the control of the experimenter

2 Exercises

This section records the facts presented the in-class exercises in chronological order.

1. Any solution $\hat{\beta}$ to $\underset{\beta}{\arg \min }(\mathbf{Y}-\mathbf{X} \beta)^{T}(\mathbf{Y}-\mathbf{X} \beta)$ satisfies that $\mathbf{X}^{T} \mathbf{X} \hat{\beta}=\mathbf{X}^{T} \mathbf{Y}$.
2. Let $\mathbf{A} \in \mathbb{R}^{s \times s}, \operatorname{rank}(\mathbf{A})=s$, and $\mathbf{B} \in \mathbb{R}^{s \times t}$. Then, $\operatorname{rank}(\mathbf{A B})=\operatorname{rank}(\mathbf{B})$.
3. (a) The columns of \mathbf{U} in the SVD of \mathbf{X} are the eigenvectors of $\mathbf{X X}^{T}$.
(b) The columns of \mathbf{V} in the SVD of \mathbf{X} are the eigenvectors of $\mathbf{X}^{T} \mathbf{X}$.
(c) The diagonal elements of \mathbf{D} in the SVD of \mathbf{X} are the square roots of the eigenvalues of $\mathbf{X}^{T} \mathbf{X}$ and $\mathbf{X} \mathbf{X}^{T}$.
4. (a) $\operatorname{rank}\left(\mathbf{X}^{\prime} \mathbf{X}\right)=\operatorname{rank}(\mathbf{X})$. (Full $\operatorname{rank} \mathbf{X}$ is a sufficient condition for LSE to be unique.)
(b) If $\operatorname{rank}(\mathbf{X})=p \leq n$, then $\mathbf{X}^{\prime} \mathbf{X}$ is positive definite. (Full rank \mathbf{X} is sufficient condition for SSE to be strictly convex.)
5. Let $\mathbf{P}_{\mathbf{X}}$ be the projection matrix onto \mathbf{X} where $\mathbf{X} \in \mathbb{R}^{n \times p}$.
(a) $\mathbf{P}_{\mathbf{X}}$ can be written $\mathbf{U A U} \mathbf{U}^{\prime}$ using SVD.
(b) $\mathbf{P}_{\mathbf{X}}$ has eigenvalue 1 of multiplicity p and eigenvalue 0 of multiplicity $n-p$.
(c) $\operatorname{rank}\left(\mathbf{P}_{\mathbf{X}}\right)=p$.
6. Every matrix has a generalized inverse.
7. If \mathbf{G} and \mathbf{H} are generalized inverses of $\mathbf{X}^{\prime} \mathbf{X}$, then $\mathbf{X G X}^{\prime}=\mathbf{X H X} \mathbf{X}^{\prime}$.
8. For $\mathbf{Y}=\mathbf{X} \beta+\varepsilon$ and $\varepsilon \mid \mathbf{X} \sim\left(\mathbf{0}, \sigma^{2} \mathbf{I}_{n}\right)$, if $a^{T} \beta$ is estimable, then $\operatorname{var}\left(a^{T} \hat{\beta} \mid \mathbf{X}\right)=$ $\sigma^{2} a^{T}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-} a$ where $\hat{\beta}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-} \mathbf{X}^{T} \mathbf{Y}$.
9. Gauss-Markov theorem for full rank $\mathbf{X} . a^{T} \hat{\beta}$ is unique UMVUE for $a^{T} \beta$.
10. Using Chebyshev's inequality, we show that

$$
P\left(\left|Y_{n}-\mu\right| \geq \delta\right) \leq \frac{\sigma_{n}^{2}}{\delta^{2}}
$$

where Y_{1}, \ldots, Y_{n} is a sequence of random variables with indexed variances and common expectation. If $\lim \sigma_{n}^{2}=0$, then $Y_{n} \xrightarrow{p} \mu$. We use this exercise to say that, if our estimator's variance goes to zero as the sample gets asymptotically large, then the estimator is asymptotically (weakly) consistent for μ.
11. Suppose $\mathbf{Y} \sim(\mathbf{X} \beta, \Sigma)$ where Σ is full rank. Then $\Sigma^{-1 / 2}(\mathbf{Y}-\mathbf{X} \beta) \sim\left(\mathbf{0}_{n}, \mathbf{I}_{n}\right)$
12. If we have full rank \mathbf{X} and Σ, the OLS and GLS estimates are both unbiased estimators of β. They often have different variances. In this case, the Gauss Markov theorem gives that $a^{T} \hat{\beta}_{G}$ is BLUE for $a^{T} \beta$.
13. Reflect on when least squares are normally distributed
14. We have our usual OLS setup with full rank \mathbf{X} and the max leverage converging to 0 . Under $H_{0}: \mathbf{A} \beta=c$ and the rank of \mathbf{A} is k,

$$
\frac{(\mathbf{A} \hat{\beta}-c)^{T}\left(\mathbf{A}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{A}^{T}\right)^{-1}(\mathbf{A} \hat{\beta}-c)}{\sigma^{2}} \xrightarrow{d} \chi_{k}^{2}
$$

15. The setup is the same as above, except we have normal errors and a finite sample. Instead,

$$
\frac{(\mathbf{A} \hat{\beta}-c)^{T}\left(\mathbf{A}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{A}^{T}\right)^{-1}(\mathbf{A} \hat{\beta}-c)}{\sigma^{2}} \sim \chi_{k}^{2}
$$

That is, χ^{2} is an exact test.
16. We prefer orthogonal designs
17. Some derivations on the way to the asymptotic distribution for ordinary least squares in the heteroscedastic case

3 Homeworks

This section records the facts presented in homeworks in roughly chronological order.

1. For any matrix $\mathbf{A}, \mathbf{A A}^{\prime}=\mathbf{0}$ implies $\mathbf{A}=0$.
2. Projection matrices.
(a) For any matrix $\mathbf{A}, \mathbf{P}_{\mathbf{A}}=\mathbf{A}\left(\mathbf{A}^{\prime} \mathbf{A}\right)^{-} \mathbf{A}^{\prime}$ is a projection matrix onto $\mathcal{C}(\mathbf{A})$.
(b) $\mathbf{P}_{\mathbf{A}} \mathbf{A}=\mathbf{A}$.
(c) $\operatorname{rank}\left(\mathbf{P}_{\mathbf{A}}\right)=\operatorname{rank}(\mathbf{A})$.
3. Given two OLS estimates of $\beta, \mathbf{X} \hat{\beta}_{1}=\mathbf{X} \hat{\beta}_{2}$.
4. Consider models $\mathbb{E}[\mathbf{Y} \mid \mathbf{X}]=\mathbf{1} \alpha_{0}+\mathbf{W} \alpha$ and $\mathbb{E}[\mathbf{Y} \mid \mathbf{X}]=\mathbf{1} \beta_{0}+\mathbf{X} \beta$. Suppose \mathbf{W}, a column centered version of design matrix \mathbf{X}, has full rank $p<n$. Then least squares estimates of α and β are unique and $\hat{\alpha}=\hat{\beta}$.
5. Let \mathbf{P} be a $n \times n$ projection matrix and \mathbf{R} be a $n \times n$ orthogonal matrix.

- \mathbf{P} is positive semidefinite.
- If $\operatorname{rank}(\mathbf{P})=r$, then \mathbf{P} has eigenvalue 1 with multiplicity r and eigenvalue 0 with multiplicity $n-r$.
- \mathbf{R} has real eigenvalues ± 1.

6. The (unique) least squares estimate is unbiased when the design matrix is full rank.
7. In simple linear regression, $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ are uncorrelated if and only if $\bar{x}=0$.
8. (Seber and Lee page 64.) Rank-deficient \mathbf{X} implies that a least squares estimator cannot be unbiased for β. Moreover, a least squares estimate is of the form $\mathbf{C Y}_{n}$ where $\mathbf{C} \in \mathbb{R}^{p \times n}$ and $\mathbf{X}^{T} \mathbf{X C}=\mathbf{X}^{T}$.
9. The sum of the leverages equals the rank of the design matrix. Moreover, leverages lie in between 0 and 1 inclusive.
10. There are more ways to show that the Lindeberg condition holds besides just using the dominated convergence theorem. Sometimes inequalities like Hölder's and Markov's can be useful.
11. For $\mathbf{Y}=\mathbf{X} \beta+\varepsilon$ and $\varepsilon \sim\left(0, \sigma^{2}\right)$,

$$
s^{2}=\frac{(\mathbf{Y}-\mathbf{X} \hat{\beta})^{T}(\mathbf{Y}-\mathbf{X} \hat{\beta})}{n-p} \xrightarrow{p} \sigma^{2}
$$

4 Potpourri

- Suppose $\mathbf{A X}^{\prime} \mathbf{X}-\mathbf{B} \mathbf{X}^{\prime} \mathbf{X}=\mathbf{0}$. Then $\mathbf{A X}^{\prime}=\mathbf{B} \mathbf{X}^{\prime}$.
- $\operatorname{trace}(\mathbf{P})=\operatorname{rank}(\mathbf{P})$ for any projection matrix \mathbf{P}.
- Expected value of the residuals is $\mathbf{0}$.
- For our standard LM setup, $\frac{1}{n-\operatorname{rank}(\mathbf{X})}(\mathbf{Y}-\mathbf{X} \hat{\beta})^{T}(\mathbf{Y}-\mathbf{X} \hat{\beta})$ is unbiased estimator of $\hat{\sigma}^{2}$.
- The only full rank projection matrix is the identity matrix.
- $\mathbb{E}\left[\mathbf{Z}^{T} \mathbf{A Z}\right]=\operatorname{trace}(\mathbf{A} \operatorname{Var}(\mathbf{Z}))+\mathbb{E}[\mathbf{Z}]^{T} \mathbf{A} \mathbb{E}[\mathbf{Z}]$.
- If $Y \sim N\left(\mathbf{X} \beta, \sigma^{2} I_{n}\right)$, then
$-\hat{\beta}$ is the MLE for β
$-\hat{\beta}$ is unbiased for β
$-\hat{\beta}$ is efficient, i.e. achieves CR lower bound
- F-test is UMP level α test
- Hölder's inequality. For $p, q>1$ and $\frac{1}{p}+\frac{1}{q}=1$,

$$
\mathbb{E}[|X Y|] \leq \mathbb{E}\left[|X|^{p}\right]^{\frac{1}{p}} \times \mathbb{E}\left[|Y|^{q}\right]^{\frac{1}{q}}
$$

- Cauchy-Schwarz inequality.

$$
\begin{aligned}
\mathbb{E}[X Y]^{2} & \leq \mathbb{E}[|X Y|]^{2} \\
& \leq \mathbb{E}\left[|X|^{2}\right] \times \mathbb{E}\left[|Y|^{2}\right] \\
& =\mathbb{E}\left[X^{2}\right] \times \mathbb{E}\left[Y^{2}\right]
\end{aligned}
$$

- Markov inequality. $\mu(|X|>\lambda) \leq \frac{\mathbb{E}\left[|X|^{r}\right]}{\lambda^{r}}$ for all $\lambda>0$. This inequality provides upper bounds on probabilities.

