Let B, C be individuals. Let A be a common ancestor in the ancestor set $\mathcal{A} . \mathcal{P}(\cdot)$ is a function that takes as input a common ancestor A and outputs the set of paths $\left\{p_{A}\right\}$ by which B and C are connected through $A . n(\cdot)$ is a counting function that takes as input a path and reports the number of edges (meioses) in the path.

Kinship

- path counting: $\psi(B, C)=\sum_{A \in \mathcal{A}} \sum_{p_{A} \in \mathcal{P}(A)}\left(1+f_{A}\right)(1 / 2)^{n\left(p_{A}\right)+1}$
- condensed IBD states: $\psi(B, C)=\Delta_{1}+1 / 2 \cdot\left(\Delta_{3}+\Delta_{5}+\Delta_{7}\right)+1 / 4 \cdot \Delta_{8}$
- (non-inbred) gene identity states: $\psi(B, C)=1 / 2 \cdot \kappa_{2}+1 / 4 \cdot \kappa_{1}+0 \cdot \kappa_{0}=\left(2 \kappa_{2}+\kappa_{1}\right) / 4$
- parental kinships: $\psi(C, B)=1 / 4 \cdot\left(\psi\left(M_{C}, M_{B}\right)+\psi\left(F_{C}, F_{B}\right)+\psi\left(M_{C}, F_{B}\right)+\psi\left(F_{C}, M_{B}\right)\right)$

(Non-inbred) Gene Identity States

κ probabilities are for pedigrees without inbreeding.

- $\kappa_{2}+\kappa_{1}+\kappa_{0}=1$
- parental kinships: $\kappa_{2}(B, C)=\psi\left(M_{C}, M_{B}\right) \psi\left(F_{C}, F_{B}\right)+\psi\left(M_{C}, F_{B}\right) \psi\left(F_{C}, M_{B}\right)$
- condensed IBD states: $\kappa_{2}=\Delta_{7}, \kappa_{1}=\Delta_{8}, \kappa_{0}=\Delta_{9}$

Inbreeding

- kinship: $f(B)=\psi\left(M_{B}, F_{B}\right)$
- condensed IBD states: $f(B)=\Delta_{1}+\Delta_{2}+\Delta_{3}+\Delta_{4}$ or $f(C)=\Delta_{1}+\Delta_{2}+\Delta_{5}+\Delta_{6}$

Conditional Probabilities

- Conditional probabilities: $P(D \mid E)=\frac{P(D, E)}{P(E)}, P(D \mid E, F)=\frac{P(D, E \mid F)}{P(E \mid F)}$
- Law of total probability: $P(D)=\sum_{i} P\left(D, E_{i}\right)=\sum_{i} P\left(D \mid E_{i}\right) P\left(E_{i}\right)$
- $P\left(G_{C} \mid\right.$ tree $)=P\left(G_{C} \mid \operatorname{IBD} 0\right)(1-f(C))+P\left(G_{C} \mid \operatorname{IBD} 1\right)(f(C))$
- $P\left(G_{B}, G_{C} \mid\right.$ tree $)=\frac{\sum_{\text {IBD states }} P\left(G_{B}, G_{C} \mid \text { IBD state }\right) P(\text { IBD state|tree })}{P\left(G_{C} \mid \text { tree }\right)}$

Seth Temple
sdtemple@uw.edu

BIOST 550
April 25, 2022

Relationships Table

Note that the notation ϕ is ψ and indices i, j are individuals B, C from the previous page.

RELATIONSHIP	Δ_{1}	Δ_{2}	Δ_{3}	Δ_{4}	Δ_{5}	Δ_{6}	Δ_{7}	Δ_{8}	Δ_{9}	$\phi_{i j}$
Self	0	0	0	0	0	0	1	0	0	$\frac{1}{2}$
Parent-offspring	0	0	0	0	0	0	0	1	0	$\frac{1}{4}$
Half sibs	0	0	0	0	0	0	0	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{8}$
Full sibs/dizygotic twins	0	0	0	0	0	0	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{4}$
Monozygotic twins	0	0	0	0	0	0	1	0	0	$\frac{1}{2}$
First cousins	0	0	0	0	0	0	0	$\frac{1}{4}$	$\frac{3}{4}$	$\frac{1}{16}$
Double first cousins	0	0	0	0	0	0	$\frac{1}{16}$	$\frac{6}{16}$	$\frac{9}{16}$	$\frac{1}{8}$
Second cousins	0	0	0	0	0	0	0	$\frac{1}{16}$	$\frac{15}{16}$	$\frac{1}{64}$
Uncle-nephew	0	0	0	0	0	0	0	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{8}$
Offspring of sib-matings	$\frac{1}{16}$	$\frac{1}{32}$	$\frac{1}{8}$	$\frac{1}{32}$	$\frac{1}{8}$	$\frac{1}{32}$	$\frac{7}{32}$	$\frac{5}{16}$	$\frac{1}{16}$	$\frac{3}{8}$

IBD States

IBD Labels

Note that these IBD labels correspond to the IBD states on the preceding page. Jacquard's IBD states are for pairwise comparisons. IBD labeling extends to multi-individual comparisons, with the accompanying visual diagrams being IBD graphs.

ibd pattern	$i b d$ label	ibd group	state description	
$\begin{array}{cc} B_{1} & B_{2} \\ p m & p m \end{array}$			individuals autozygous	genes shared
\bullet	1111	1111	B_{1}, B_{2}	4 genes ibd
- - -	1112	1112	B_{1}	3 genes $i b d$
- - -	1121			
- - -	1211	1211	B_{2}	3 genes $i b d$
- 0 - 0	1222			
- - ○	1122	1122	B_{1}, B_{2}	none
- \dagger	1123	1123	B_{1}	none
- t	1233	1233	B_{2}	none
- - -	1212	1212	none	2 genes
- ○ - -	1221			shared
- - - †	1213	1213	none	1 gene
- ○ † -	1231			shared
- ○ $\quad \dagger$	1223			
- ○ \dagger -	1232			
- ○ \dagger *	1234	1234	none	none

Table 3.1. States of gene ibd among the four genes of two individuals

References

- Thompson, E. A. (2000). Statistical inference from genetic data on pedigrees. IMS.
- https://brainder.org/tag/jacquard-coefficient/

