Let B, C be individuals. Let A be a common ancestor in the ancestor set \mathcal{A} . $\mathcal{P}(\cdot)$ is a function that takes as input a common ancestor A and outputs the set of paths $\{p_A\}$ by which B and C are connected through A. $n(\cdot)$ is a counting function that takes as input a path and reports the number of edges (meioses) in the path.

Kinship

- path counting: $\psi(B,C) = \sum_{A \in \mathcal{A}} \sum_{p_A \in \mathcal{P}(A)} (1+f_A) (1/2)^{n(p_A)+1}$
- condensed IBD states: $\psi(B,C) = \Delta_1 + 1/2 \cdot (\Delta_3 + \Delta_5 + \Delta_7) + 1/4 \cdot \Delta_8$
- (non-inbred) gene identity states: $\psi(B,C) = 1/2 \cdot \kappa_2 + 1/4 \cdot \kappa_1 + 0 \cdot \kappa_0 = (2\kappa_2 + \kappa_1)/4$
- parental kinships: $\psi(C, B) = 1/4 \cdot (\psi(M_C, M_B) + \psi(F_C, F_B) + \psi(M_C, F_B) + \psi(F_C, M_B))$

(Non-inbred) Gene Identity States

 κ probabilities are for pedigrees without inbreeding.

- $\kappa_2 + \kappa_1 + \kappa_0 = 1$
- parental kinships: $\kappa_2(B,C) = \psi(M_C,M_B)\psi(F_C,F_B) + \psi(M_C,F_B)\psi(F_C,M_B)$
- condensed IBD states: $\kappa_2 = \Delta_7, \ \kappa_1 = \Delta_8, \ \kappa_0 = \Delta_9$

Inbreeding

- kinship: $f(B) = \psi(M_B, F_B)$
- condensed IBD states: $f(B) = \Delta_1 + \Delta_2 + \Delta_3 + \Delta_4$ or $f(C) = \Delta_1 + \Delta_2 + \Delta_5 + \Delta_6$

Conditional Probabilities

- Conditional probabilities: $P(D|E) = \frac{P(D,E)}{P(E)}, P(D|E,F) = \frac{P(D,E|F)}{P(E|F)}$
- Law of total probability: $P(D) = \sum_{i} P(D, E_i) = \sum_{i} P(D|E_i)P(E_i)$
- $P(G_C|\text{tree}) = P(G_C|\text{IBD } 0)(1 f(C)) + P(G_C|\text{IBD } 1)(f(C))$
- $P(G_B, G_C | \text{tree}) = \frac{\sum_{\text{IBD states}} P(G_B, G_C | \text{IBD state}) P(\text{IBD state}| \text{tree})}{P(G_C | \text{tree})}$

Relationships Table

Note that the notation ϕ is ψ and indices i, j are individuals B, C from the previous page.

RELATIONSHIP	Δ_1	Δ_2	Δ_3	Δ_4	Δ_5	Δ_6	Δ_7	Δ_8	Δ_9	ϕ_{ij}
Self	0	0	0	0	0	0	1	0	0	$\frac{1}{2}$
Parent-offspring	0	0	0	0	0	0	0	1	0	$\frac{1}{4}$
Half sibs	0	0	0	0	0	0	0	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{8}$
Full sibs/dizygotic twins	0	0	0	0	0	0	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{4}$
Monozygotic twins	0	0	0	0	0	0	1	0	0	$\frac{1}{2}$
First cousins	0	0	0	0	0	0	0	$\frac{1}{4}$	$\frac{3}{4}$	$\frac{1}{16}$
Double first cousins	0	0	0	0	0	0	$\frac{1}{16}$	$\frac{6}{16}$	$\frac{9}{16}$	$\frac{1}{8}$
Second cousins	0	0	0	0	0	0	0	$\frac{1}{16}$	$\frac{15}{16}$	$\frac{1}{64}$
Uncle-nephew	0	0	0	0	0	0	0	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{8}$
Offspring of sib-matings	$\frac{1}{16}$	$\frac{1}{32}$	$\frac{1}{8}$	$\frac{1}{32}$	$\frac{1}{8}$	$\frac{1}{32}$	$\frac{7}{32}$	$\frac{5}{16}$	$\frac{1}{16}$	$\frac{3}{8}$

IBD States

IBD Labels

Note that these IBD labels correspond to the IBD states on the preceding page. Jacquard's IBD states are for pairwise comparisons. IBD labeling extends to multi-individual comparisons, with the accompanying visual diagrams being IBD graphs.

<i>ibd</i> p	attern	ibd label	ibd group	state des	scription
B_1	B_2			individuals	genes
p m	p m			autozygous	shared
• •	• •	1111	1111	B_1,B_2	4 genes ibd
••	• •	$1\ 1\ 1\ 2$	$1\ 1\ 1\ 2$	B_1	3 genes ibd
••	•	$1\ 1\ 2\ 1$			
• •	• •	$1\ 2\ 1\ 1$	$1\ 2\ 1\ 1$	B_2	3 genes ibd
• •	0 0	$1\ 2\ 2\ 2$			
••	0 0	$1\ 1\ 2\ 2$	$1\ 1\ 2\ 2$	B_1, B_2	none
••	o †	$1\ 1\ 2\ 3$	$1\ 1\ 2\ 3$	B_1	none
• •	† †	$1\ 2\ 3\ 3$	$1\ 2\ 3\ 3$	B_2	none
• •	• •	$1\ 2\ 1\ 2$	$1\ 2\ 1\ 2$	none	2 genes
• •	•	$1\ 2\ 2\ 1$			shared
• •	• †	$1\ 2\ 1\ 3$	$1\ 2\ 1\ 3$	none	1 gene
• •	† •	$1\ 2\ 3\ 1$			shared
• •	o †	$1\ 2\ 2\ 3$			
• •	† 0	$1\ 2\ 3\ 2$			
• •	† *	$1\ 2\ 3\ 4$	$1\ 2\ 3\ 4$	none	none

TABLE 3.1. States of gene ibd among the four genes of two individuals

References

- Thompson, E. A. (2000). Statistical inference from genetic data on pedigrees. IMS.
- https://brainder.org/tag/jacquard-coefficient/