Let M_A be the mother of A, F_A be the father of A, $n(\cdot)$ be the number of meioses in a path, $\psi(\cdot, \cdot)$ be the kinship coefficient, and $f_A = \psi(M_A, F_A)$ be the inbreeding coefficient for A. Throughout the following exercises, we use the path-counting formula.

$$\sum_{A \in \mathcal{A}} \sum_{\mathcal{P}(A)} (1 + f_A) (1/2)^{n(\mathcal{P}(A))+1}$$

1 British Royal Family

- 1. Compute the kinship between Lady Louise Windsor and Prince George of Cambridge.
 - (a)
- 2. Compute the kinship of Archie Harrison and Edward, Earl of Wessex.
 - (a)
- 3. Compute the kinship of Lena Elizabeth and Charles, Prince of Wales.
 - (a)

2 Cleopatra of Egypt

- 1. Compute the inbreeding coefficient of Cleopatra III.
 - (a)
- 2. Compute the inbreeding coefficient of Cleopatra IV.
 - (a)
- 3. Compute the inbreeding coefficient of Berenice III.
 - (a)

3 Jacquard's Δ values

Consider the figure above. Compute Δ_i values for Charlie and Frank.

1. Δ_1

2. Δ_2

3. Δ_3

4. Δ_9

Let M_A be the mother of A, F_A be the father of A, $n(\cdot)$ be the number of meioses in a path, $\psi(\cdot, \cdot)$ be the kinship coefficient, and $f_A = \psi(M_A, F_A)$ be the inbreeding coefficient for A. Throughout the following exercises, we use the path-counting formula.

$$\sum_{A \in \mathcal{A}} \sum_{\mathcal{P}(A)} (1 + f_A) (1/2)^{n(\mathcal{P}(A))+1}$$

1 British Royal Family

- 1. Compute the kinship between Lady Louise Windsor and Prince George of Cambridge.
 - (a) $2(1+0)(1/2)^{5+1} = 0.03125$. This is consistent with first cousins once removed.
- 2. Compute the kinship of Archie Harrison and Edward, Earl of Wessex.
 - (a) $2(1+0)(1/2)^{4+1} = .0625$. This is consistent with a granduncle-grandnephew.
- 3. Compute the kinship of Lena Elizabeth and Charles, Prince of Wales.
 - (a) $2(1+0)(1/2)^{4+1} = .0625$. This is consistent with a granduncle-grandniece.

2 Cleopatra of Egypt

- 1. Compute the inbreeding coefficient of Cleopatra III.
 - (a) The kinship between Ptolemy VI Philometer and Cleopatra II is $2(1+0)(1/2)^{2+1} = 0.25$. This is consistent with siblings. Therefore, the inbreeding coefficient for Cleopatra III is 0.25.
- 2. Compute the inbreeding coefficient of Cleopatra IV.
 - (a) The kinship between Ptolemy VIII Physicon and Cleopatra III is

$$2(2)(1+0)(1/2)^{3+1} = 0.25.$$

This is an uncle-niece pair twice over. Therefore, the inbreeding coefficient for Cleopatra IV is 0.25.

- 3. Compute the inbreeding coefficient of Berenice III.
 - (a) The kinship between Cleopatra Selene I and Ptolemy IX Lathyros is

$$1(1)(1+0)(1/2)^{2+1} + 1(1)(1+0.25)(1/2)^{2+1} + 2(4)(1+0)(1/2)^{5+1} = 0.40625.$$

The first term is for the path through the non-inbred Ptolemy VIII Physicon, the second term is for the path through the inbred Cleopatra III, and the third term is for paths through the non-inbred founders. Therefore, the inbreeding coefficient for Bernice III is 0.40625.

4. Compute the inbreeding coefficient of Cleopatra V.

Seth Temple

sdtemple@uw.edu

(a) The kinship between Bernice III and Ptolemy X Alexander I is

 $1(2)(1+0)(1/2)^{3+1} + 1(2)(1+0.25)(1/2)^{3+1} + 2(8)(1+0)(1/2)^{6+1} = 0.40625.$

The first term is for the paths through the non-inbred Ptolemy VIII Physicon, the second term is for the paths through the inbred Cleopatra III, and the third term is for paths through the non-inbred founders. Therefore, the inbreeding coefficient for Cleopatra V is 0.40625.

- 5. Compute the inbreeding coefficient of Cleopatra VII.
 - (a) This one is hard. We compute the kinship between Cleopatra V and Ptolemy XII. They have 5 common ancestors: Ptolemy IX, Cleopatra III, Ptolemy VIII, Ptolemy V, Cleopatra I. We consider the paths through each common ancestor.
 - Ptolemy IX: $(1)(1+0.25)(1/2)^{3+1}$
 - Cleopatra III: $(2)(1+0.25)(1/2)^{4+1} + (3)(1+0.25)(1/2)^{5+1}$
 - Ptolemy VIII: $(2)(1+0)(1/2)^{4+1} + (3)(1+0)(1/2)^{5+1}$
 - Cleopatra I: $(4 \cdot 2)(1+0)(1/2)^{4+3+1} + (4 \cdot 3)(1+0)(1/2)^{5+3+1}$

The answer is $P_9 + C_3 + P_8 + 2 \times C_1 = 0.43359375$.

Jacquard's Δ values

You can verify the values for $\Delta_1, \Delta_2, \Delta_3, \Delta_9$ in the final row of the table below. Arguments for Δ_1 and Δ_3 are in the lecture slides. The argument for Δ_3 is the same as the argument for Δ_5 . The arguments for Δ_4 and Δ_6 are the same. You can check the remaining calculations. Δ_7 and Δ_9 are the hardest.

RELATIONSHIP	Δ_1	Δ_2	Δ_3	Δ_4	Δ_5	Δ_6	Δ_7	Δ_8	Δ_9	ϕ_{ij}
Self	0	0	0	0	0	0	1	0	0	$\frac{1}{2}$
Parent-offspring	0	0	0	0	0	0	0	1	0	$\frac{1}{4}$
Half sibs	0	0	0	0	0	0	0	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{8}$
Full sibs/dizygotic twins	0	0	0	0	0	0	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{4}$
Monozygotic twins	0	0	0	0	0	0	1	0	0	$\frac{1}{2}$
First cousins	0	0	0	0	0	0	0	$\frac{1}{4}$	$\frac{3}{4}$	$\frac{1}{16}$
Double first cousins	0	0	0	0	0	0	$\frac{1}{16}$	$\frac{6}{16}$	$\frac{9}{16}$	$\frac{1}{8}$
Second cousins	0	0	0	0	0	0	0	$\frac{1}{16}$	$\frac{15}{16}$	$\frac{1}{64}$
Uncle-nephew	0	0	0	0	0	0	0	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{8}$
Offspring of sib-matings	$\frac{1}{16}$	$\frac{1}{32}$	$\frac{1}{8}$	$\frac{1}{32}$	$\frac{1}{8}$	$\frac{1}{32}$	$\frac{7}{32}$	$\frac{5}{16}$	$\frac{1}{16}$	$\frac{3}{8}$