1 Matrices

- Have rank equal to the number of linearly independent columns/rows
- Have rank equal to the dimension of their column space
- Have singular value decompositions UDV ${ }^{\prime}$
- Have a generalized inverse
- Have a column space and a row space
- Have null space $\{\mathbf{x}: \mathbf{A x}=\mathbf{0}\}$

1.1 Orthogonal projections

- Map vectors onto a subspace
- Are symmetric
- Are idempotent
- Are positive semidefinite
- Have eigenvalue 1 with multiplicity equal to their rank; all other eigenvalues are zero
- For any $\mathbf{A}, \mathbf{P}_{\mathbf{A}}=\mathbf{A}\left(\mathbf{A}^{\prime} \mathbf{A}\right)^{-} \mathbf{A}^{\prime}$ is an orthogonal projection onto $\mathcal{C}(\mathbf{A})$
- $\mathrm{P}_{\mathrm{A}} \mathrm{A}=\mathrm{A}$
- $\operatorname{rank}\left(\mathbf{P}_{\mathbf{A}}\right)=\operatorname{rank}(\mathbf{A})=\operatorname{rank}(\mathbf{U})$ where \mathbf{U} comes from the SVD of \mathbf{A}
- I - \mathbf{P} is an orthogonal projection matrix as well

1.2 Square matrices

- Are invertible if they have full rank
- Are invertible if they have empty null space
- Have rank equal to the number of nonzero eigenvalues
- Have trace equal to the sum of their diagonal elements

1.3 Symmetric matrices

- Have a spectral decomposition UDU ${ }^{\prime}$
- Have trace equal to the sum of their eigenvalues
- Have determinant equal to the product of their eigenvalues
- Are positive (semi)definite if all their eigenvalues are (nonnegative) positive
- Have positive (semi)definite symmetric square roots

1.4 Matrix identities

- $\mathbf{A X X}^{\prime}=\mathbf{B X X}{ }^{\prime}$ implies $\mathbf{A X}=\mathbf{B X}$
- $\mathbf{A A}^{\prime}=0$ implies $\mathbf{A}=0$
- Block matrix inversion

$$
\left[\begin{array}{ll}
\mathbf{A} & \mathbf{B} \\
\mathbf{B}^{\prime} & \mathbf{C}
\end{array}\right]^{-1}=\left[\begin{array}{cc}
\left(\mathbf{A}-\mathbf{B C}^{-1} \mathbf{B}^{\prime}\right)^{-1} & -\left(\mathbf{A}-\mathbf{B C}^{-1} \mathbf{B}^{\prime}\right)^{-1} \mathbf{B C} \mathbf{C}^{-1} \\
-\mathbf{C}^{-1} \mathbf{B}^{\prime}\left(\mathbf{A}-\mathbf{B C}^{-1} \mathbf{B}^{\prime}\right)^{-1} & \mathbf{C}^{-1}+\mathbf{C}^{-1} \mathbf{B}^{\prime}\left(\mathbf{A}-\mathbf{B C}^{-1} \mathbf{B}^{\prime}\right)^{-1} \mathbf{B} \mathbf{C}^{-1}
\end{array}\right]
$$

- Invertible \mathbf{A} implies $\left(\mathbf{A}^{-1}\right)^{\prime}=\left(\mathbf{A}^{\prime}\right)^{-1}$
- For $m \times n$ matrix $A, \operatorname{rank}(\mathbf{A})+\operatorname{nullity}(\mathbf{A})=n$
- For invertible \mathbf{A} and $\mathbf{C}, \operatorname{rank}(\mathbf{A B})=\operatorname{rank}(\mathbf{B})=\operatorname{rank}(\mathbf{B C})$
- (Woodbury) $\mathbf{A}^{-1}-\mathbf{A}^{-1} \mathbf{U}\left(\mathbf{I}+\mathbf{V A}^{-1} \mathbf{U}\right)^{-1} \mathbf{V A}^{-1}=(\mathbf{A}+\mathbf{U V})^{-1}$

2 Linear model

- $\mathbf{Y}=\mathbf{X} \beta+\varepsilon$ where $\mathbb{E}[\varepsilon \mid \mathbf{X}]=\mathbf{0}$
- Sometimes we assume $\varepsilon \mid \mathbf{X} \sim\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$
$-\mathrm{Or}, \varepsilon \mid \mathbf{X} \sim N\left(\mathbf{0}, \sigma^{2} \mathbf{I}_{n}\right)$
- Or, $\varepsilon \mid \mathbf{X} \sim(\mathbf{0}, \Sigma)$
- Or, $\mathbf{W} \varepsilon$ where $\varepsilon \mid \mathbf{X} \sim\left(\mathbf{0}, \mathbf{I}_{n}\right)$
- The sum of the leverages equals the rank of the design matrix. Moreover, the leverages lie in between 0 and 1 inclusive.

2.1 Least squares

- $\underset{\beta}{\arg \min }(\mathbf{Y}-\mathbf{X} \beta)^{\prime}(\mathbf{Y}-\mathbf{X} \beta)$
- Solve the normal equations $\mathbf{X}^{\prime} \mathbf{X} \beta=\mathbf{X}^{\prime} \mathbf{Y}$
- Fitted values are the same for all least squares estimates
- Is unique for full rank design matrix
- Can be of the form $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-} \mathbf{X}^{\prime} \mathbf{Y}$
- Is unique under identifiability constraints
- Generalized least squares
$-\hat{\beta}_{G}=\left(\mathbf{X}^{\prime} \Sigma^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \Sigma^{-1} \mathbf{Y}$ is the solution to $\underset{\beta}{\arg \min }(\mathbf{Y}-\mathbf{X} \beta)^{\prime} \Sigma^{-1}(\mathbf{Y}-\mathbf{X} \beta)$ when $\mathbf{X}^{\prime} \Sigma^{-1} \mathbf{X}$ is full rank
- We prefer this over ordinary least squares when we know the correlation structure
- A Gauss-Markov theorem can be derived by rotating to the uncorrelated case

2.2 Statistical properties

- $a^{\prime} \beta$ is estimable if a is in the row space of \mathbf{X}
- Estimable $a^{\prime} \beta$ implies that $a^{\prime} \hat{\beta}$ is BLUE
- For full rank design matrix, $a^{\prime} \hat{\beta}$ is BLUE
- θ is identifiable if $\theta \neq \theta_{0}$ implies $f_{\theta} \neq f_{\theta_{0}}$
- For $\hat{\beta}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-} \mathbf{X}^{\prime} \mathbf{Y}, a^{\prime} \hat{\beta}$ is unbiased
- Additionally, if errors are uncorrelated, $\operatorname{var}\left(a^{\prime} \hat{\beta} \mid \mathbf{X}\right)=\sigma^{2} a^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-} a$
- $\hat{\sigma}^{2}=\frac{1}{n-\operatorname{rank}(\mathbf{X})}(\mathbf{Y}-\mathbf{X} \hat{\beta})^{\prime}(\mathbf{Y}-\mathbf{X} \hat{\beta})$ is unbiased
- $\hat{\beta} \xrightarrow{p} \beta$ if $\lambda_{\text {min }}\left(\mathbf{X}^{\prime} \mathbf{X}\right) \rightarrow \infty$

2.3 Hypothesis Testing

- χ_{k}^{2} test is exact for a finite sample, normal errors, and known σ^{2}
- χ_{k}^{2} test is exact for an asymptotic sample under some regularity conditions
- F-test is exact for a finite sample, normal errors, and unknown σ^{2}
- F-test is (up to a constant factor) asymptotically the same as the χ^{2}-test even if the errors are non-normal

2.4 Examples

- $\mathrm{X}=1$
$-\mathrm{P}_{\mathrm{X}}=\frac{1}{n} \mathbf{1 1}^{\prime}$
$-\bar{Y}$ is BLUE
$-\mathbf{P}_{\mathbf{X}} \mathbf{Y}=(\bar{Y}, \ldots, \bar{Y})^{\prime}$
- Rank-deficient balanced one-way ANOVA
- There are many ordinary least squares estimates (see Homework 2)
$-\mathbf{P}_{\mathbf{X}}=\frac{1}{J}\left[\begin{array}{cc}\mathbf{1 1 ^ { \prime }} & \mathbf{0} \\ \mathbf{0} & \mathbf{1 1}\end{array}\right]_{2 J \times 2 J}$
$-\mathbf{P}_{\mathbf{x}} \mathbf{Y}=\left(\bar{Y}_{1}, \ldots, \bar{Y}_{1}, \bar{Y}_{2}, \ldots, \bar{Y}_{2}\right)^{\prime}$
- Balanced one-way ANOVA
- β_{0} is the population mean; β_{1} is difference between group 1 and population mean; β_{2} is difference between group 2 and the population mean
- Can derive asymptotic results
- Simple linear regression with intercept
$-\hat{\beta}_{0}=\bar{Y}-\hat{\beta}_{1} \bar{X}$
$-\hat{\beta}_{1}=\frac{\sum\left(\left(X_{i}-\bar{X}\right) Y_{i}\right)}{\sum\left(X_{i}-\bar{X}\right)^{2}}$
- Column-centered linear regression with intercept
$-\hat{\alpha}_{0}=\bar{Y}$
$-\hat{\alpha}=\left(\mathbf{X}^{\prime}\left(\mathbf{P}_{\mathbf{X}}-\mathbf{P}_{\mathbf{1}}\right) \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\left(\mathbf{P}_{\mathbf{X}}-\mathbf{P}_{\mathbf{1}}\right) \mathbf{Y}$
$-\alpha$ and β have the same estimates and interpretations whereas the intercepts α_{0} and β_{0} have different estimates and different interpretations
- An orthogonal design
- Split 50/50 environments 1 vs 2 and in each split 25/25 control vs treatment
- Use $1 / 2$ and $-1 / 2$ encoding for derivations
- Use 0 and 1 or -1 and 1 encoding for modeling

3 General

3.1 Tricks

- Rephrase in terms of problems we have already solved
- Express statements compactly in terms of (projection) matrices
- Rotate to uncorrelated case
- Rewrite in terms of weighted errors
- Take advantage of i.d. assumption
- Use a matrix identity
- Use an inequality
- Look to cancel/simplify terms when possible
- Assume what we require and consider the implications later :)

3.2 Word on the Street

- Weighted averages are normally distributed
- F-tests in statistical software is well-motivated for finite and asymptotic samples
- Homoscedasticity may be an unreasonable assumption
- Orthogonal designs are nice (optimal)
- Having observations over a greater range is better
- Having more observations is better
- Having uncorrelated observations is better

