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These notes are from courses taught by University of Washington Professors Alex Luedtke and
Marco Carone, as well as based on van der Vaart’s Asymptotic Statistics and Wainwright’s
High-Dimensional Statistics. Another textbook Weak Convergence and Empirical Processes
by van der Vaart and Wellner is used. This book may be abbreviated vdV&W (1996) whereas
the blue book may be abbreviated vdV (2000). My contribution is to reword and reorganize
course content and to provide some supplementary material. Enjoy the cover page matter
and the rest!
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1 Decision Theory

We introduce four criteria to measure the performance of decision rules: Bayes risk, mini-
maxity, Γ-minimaxity, and admissibility.

1.1 Definitions

• An action a from an action space A is the realization of a probability distribution
conditional on data.

• A decision rule D(·|X = x) is a probability distribution conditional on data. We
commonly use deterministic decision rules, i.e. the probability distribution is degener-
ate.

• A loss function L : A×Θ→ R measures the quality of an action a ∈ A when θ ∈ Θ.

• Risk is a function that measures the quality of a decision rule given θ ∈ Θ.

R(D, θ) =

∫
X

∫
A
L(a, θ)D(da|x)dPθ(x).

• A (decision) rule is inadmissible if there is another decision rule that has risk less
than or equal to it everywhere and risk strictly less than it somewhere. A decision rule
is admissible if it is not inadmissible.

• A rule is minimax if its worst case risk is the infimum of the worst case risks of various
rules. That is,

sup
θ∈Θ
R(D?, θ) = inf

D∈D
sup
θ∈Θ
R(D, θ).

• The Bayes risk with respect to prior Π is the expectation of a rule’s risk. That is,

r(D,Π) =

∫
Θ

R(D, θ)dΠ(θ).

• A rule is a Bayes rule with respect to a prior Π if it achieves the smallest Bayes risk.
That is,

r(D?,Π) = inf
D∈D

r(D,Π).

• A rule is unique Bayes for a prior if any other Bayes rule equals it except on null sets
for all Pθ. A rule is unique minimax if any other minimax rule equals it except on null
sets for all Pθ.
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• An estimator D? is Γ-minimax w.r.t. a loss function if

sup
Π∈Γ

r(D?,Π) = inf
T

sup
Π∈Γ

r(T,Π).

This definition is analogous to minimax but w.r.t. Bayes risk as opposed to risk.

• The kernel of a posterior distribution is the function depending on the parameter, not
the proportionality constant. The kernel uniquely determines the posterior distribution.

• A conjugate prior is one such that the posterior distribution is in the same family as
the prior distribution.

• A prior is least favorable if the Bayes risk for the Bayes rule and the prior achieves
the supremum over priors of Bayes risks for paired Bayes rules and priors.

• A sequence of priors is least favorable if, for all priors Π,

r(DΠ,Π) ≤ lim inf
k→∞

r(DΠk ,Πk).

1.2 Results

• Finding Bayes rules by minimizing the conditional expected loss. Suppose
that θ ∼ Π, X|θ = θ ∼ Pθ, and the loss is nonnegative. If,

(i) there is a rule with finite Bayes risk, and

(ii) there exists DΠ ∈ D for almost all x that minimizes the conditional expected loss,

then DΠ is a Bayes rule.

• If the loss function is convex for fixed θ, decision rules are unrestricted, the action space
is convex, and there is a Bayes rule, then there is a deterministic Bayes rule.

• Constant risk theorem. If Π satisfies

r(DΠ,Π) = sup
θ∈Θ
R(DΠ, θ),

then (i) DΠ is minimax, (ii) unique Bayes DΠ w.r.t. Π implies unique minimax, and
(iii) Π is a least favorable prior.

• Constant risk theorem (ii). For a sequence of priors {Πk}, if D ∈ D satisfies

sup
θ∈Θ
R(D, θ) = lim inf

k→∞
r(DΠk ,Πk),

then (i) D is minimax, and (ii) {Πk} is a least favorable prior sequence.

3



Seth Temple
sdtemple@uw.edu Notes

STAT 580s
2020-2021

• Constant Bayes risk theorem. If Π? ∈ Γ satisfies

r(DΠ? ,Π?) = sup
Π∈Γ

r(DΠ? ,Π)

then (i) DΠ? is Γ-minimax, (ii) unique Bayes DΠ? implies unique minimax, and (iii) Π?

is a least favorable prior.

• If a minimax estimator for a smaller model has no worse worst-case risk scenario for a
large model, then the estimator is minimax for the larger model as well. (See slide 36.)

• Some admissible estimators. (i) Any unique Bayes rule is admissible, and (ii) any
unique minimax rule is admissible. Moreover, for squared error loss, finite r(DΠ,Π),
and

∫
Pθ(X ∈ A)dΠ(θ) = 0 implying Pθ(X ∈ A) = 0 for all θ, we have that DΠ is a

unique Bayes rule.

• Stein’s lemma. Let Y ∼ N(µ, σ2) and let g : R → R be such that E[|g′(Y )|] < ∞.
Then, E[g(Y )(Y − µ)] = σ2E[g′(Y )]. (See slides 74-76 for multivariate generalization.)

1.3 Examples

• The posterior mean is the (deterministic) Bayes rule under L2 loss.

• The posterior median is the (deterministic) Bayes rule under L1 loss.

• The posterior mode is the (deterministic) Bayes rule under 0-1 loss.

• The sample mean is a minimax estimator for θ in an X ≡ (X1, · · · , Xn) iid sample of
N(θ, σ2) random variables.

• The sample mean is an admissible estimator for θ in the case of univariate normals
with mean θ. The sample mean is inadmissible for dimension three or higher.

• The James-Stein estimator beats the sample mean when estimating a mean vector of
dimension 3 or more. The positive-part James-Stein estimator beats the James-Stein
estimator, so the James-Stein estimator is inadmissible too. Intuitively, the James-Stein
estimator shrinks the sample mean towards zero (or some other point).

T JS(x) =

{
(1− (d−2)σ2

n||x̄n||2 )x̄n x̄n 6= (0, · · · , 0)

0 otherwise
.

In some cases, we can reduce the James-Stein estimator to lower dimensions by leverag-
ing the fact that it is a spherically symmetric estimator, where a spherically symmetric
estimator is of the form Tτ (x) = τ(||x||)x. This fact solicits some geometric intuition
(see slides 63-72). The shrinkage property creates bias and may be inappropriate for es-
timating individual means. Finally, we can motivate these estimators from an empirical
Bayes perspective.
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2 Large Sample Theory

These results facilitate statistical inference when samples sizes grow to infinity.

2.1 Definitions

• (convergence almost surely) An →a.s. A if P ( lim
n→∞
||An − A|| = 0) = 1.

• (convergence in probability) An →p A if, for all ε > 0, P (||An − A|| > ε)→ 0.

• Rd-valued random variable An converges in distribution to A if, for all bounded, con-
tinuous functions f : Rd → R,

E[f(An)]→ E[f(A)].

This convergence is sometimes referred to as weak convergence or convergence in law.

• Uniform integrability: {Xn} is u.i. if supn E[|Xn| · 1{|Xn| ≥ a}] → 0. This is a
condition controlling tail probabilities. (Weak convergence and u.i. imply convergence
of means.)

• Order notations.

– xn = O(rn) if lim sup |xn/rn| < ∞. Equivalently, there exists M > 0 such that
I{|xn| ≤ M |rn|} → 1. In layman’s terms, xn is within some multiplicative con-
stant of rn.

– xn = o(rn) if lim sup |xn/rn| = 0. Identically, for all M > 0, I{|xn| ≤M |rn|} → 1.
In layman’s terms, xn changes slower than rn.

– Xn = OP (Rn) if, for all ε > 0, there exists M > 0 s.t.

lim inf P (||Xn|| ≤M ||Rn||) > 1− ε.

– Xn = oP (Rn) if, for all M > 0,

P (||Xn|| ≤M ||Rn||)→ 1.

– Stochastic and determisitic notations are equivalent when Xn
a.s.
= xn and Rn

a.s.
= rn.

– Xn = oP (1) if and only if Xn →p 0.

– Xn = OP (1) is also referred to as the random sequence being uniformly tight.

– oP (1) is related to convergence in probability whereas OP (1) is related to weak
convergence.

5



Seth Temple
sdtemple@uw.edu Notes

STAT 580s
2020-2021

– Read these useful properties left to right as an implication:

(1) Xn = oP (Rn) if and only if Xn = RnYn for some Yn = oP (1);

(2) Xn = OP (Rn) if and only if Xn = RnYn for some Yn = OP (1);

(3) oP (1) + oP (1) = oP (1);

(4) oP (1) +OP (1) = OP (1);

(5) OP (1)OP (1) = OP (1);

(6) oP (1)OP (1) = oP (1);

(7) [1 + oP (1)]−1 = OP (1);

(8) Xn = oP (1) implies Xn = OP (1).

2.2 Results

• Almost sure convergence implies convergence in probability implies weak convergence.

• Let {An}, A, and B be defined on a common probability space. An →a.s. A and
An →a.s. B implies A = B almost surely. An →p A and An →p B implies A = B

almost surely. Similarly, if Xn →d X and Xn →d X̃, then X
d
= X̃. This juxtaposition

highlights that the weak limit X is only unique up to its distribution, whereas the other
convergence limits are unique.

• Portmanteau theorem. TFAE definitions for weak convergence ⇒. Some of these
interpretations of weak convergence are more useful than others in proving certain
results. Search this list for the appropriate definition for any proof at hand.

(i) E[f(Xn)]→ E[f(X)] for all bounded, continuous f .

(ii) P (Xn ≤ x)→ P (X ≤ x) for all continuity points x of P (X ≤ ·).
(iii) E[f(Xn)]→ E[f(X)] for all bounded, Lipschitz-continuous f .

(iv) lim supE[f(Xn)] ≤ E[f(A)] for every upper semicontinuous f bounded above.

(v) lim inf E[f(Xn)] ≥ E[f(X)] for every lower semicontinuous f bounded below.

(vi) lim supP (Xn ∈ F ) ≤ P (X ∈ F ) for all closed sets F .

(vii) lim inf P (Xn ∈ O) ≥ P (X ∈ O) for all open sets O.

(viii) P (Xn ∈ C)→ P (X ∈ C) for all continuity sets C, i.e. sets C s.t. P (X ∈ ∂C) = 0.

(ix) E[exp{itTXn}]→ E[exp{itTX}] for all vectors t. (Lévy continuity)

(x) tTXn ⇒ tTX for all vectors t. (Cramér-Wold)

• Continuous mapping. Let f be continuous at every point of C s.t. P (X ∈ C) = 1.

(i) Xn ⇒ X implies g(Xn)⇒ g(X);

(ii) Xn →p X implies g(Xn)→p g(X);

(iii) Xn →a.s X implies g(Xn)→a.s g(X).
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• Slutsky-like lemmas.

(i) Xn ⇒ X and ||Xn − Yn|| →p 0 implies Yn ⇒ X;

(ii) Xn ⇒ X and Yn →p c for constant c implies (Xn, Yn)⇒ (X, c).

• Slutsky’s lemma. This result provides a way to combine random vectors and random
variables in the asymptote. Be careful with random vectors versus random variables in
between (i) versus (ii) and (iii).

(i) Xn ⇒ X and Yn →p c for multidimensional constant c implies Xn + Yn ⇒ X + c;

(ii) Xn ⇒ X and Yn →p c for 1-dim constant c implies XnYn ⇒ cX;

(iii) Xn ⇒ X and Yn →p c for nonzero 1-dim constant c implies Xn + Yn ⇒ X/c.

• Laws of large numbers. Let E[|X|] <∞. Then,

– (weak law of large numbers) X̄n →p E[X];

– (strong law of large numbers) X̄n →a.s E[X].

• Prokhorov theorem. This theorem relates to how oP (1) is linked with converge in
probability. Here we see a relationship between OP (1) and weak convergence. The
result is not quite an if and only if result. (ii) is similar to the Bolzano-Weierstrass
theorem from real analysis.

(i) Xn ⇒ X for some X implies that X = OP (1).

(ii) Xn = OP (1) implies that there is a subsequence {Xni} s.t. Xni ⇒ X for some X.

• Central limit theorems.

– (vanilla univariate CLT) iid sample and finite second moment implies

√
n(X̄n − µ)⇒ N(0, σ2);

– (vanilla multivariate CLT) iid sample and finite expected norm squared implies

√
n(X̄n − µ)⇒ Nd(0, σ

2 · Idd).

– (Lindeberg-Feller) The setup is triangular array {Xni}ni=1 with independent rows,
E[Xni] = µni, finite Var(Xni) = σ2

ni, σ
2
n =

∑n
i=1 σ

2
ni > 0, and Yni = (Xni−µni)/σ2

n.
Then, the Lindeberg condition implies

∑n
i=1 Yni ⇒ N(0, 1).

– (Lindeberg) For all ε > 0,
∑n

i=1 E[Y 2
ni · I{|Yni| ≥ ε}]→ 0 as n gets large.

– (Lyapunov) For some δ > 0,
∑n

i=1 E[Y 2+δ
ni ] → 0 as n gets large. The Lyapunov

condition implies the Lindeberg conditon.
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• Delta methods.

– (univariate) If f : Rd → R is differentiable at ψ0 and rn(ψn − ψ0)⇒ Z, then

rn(f(ψn)− f(ψ0))⇒ 〈Z,∇f(ψ0)〉;

– (multivariate) if f : Rd → Rp is differentiable at ψ0 and rn(ψn − ψ0)⇒ Z, then

rn(f(ψn)− f(ψ0))⇒ JfZ,

where Jf is the Jacobian with respect to function f .

2.3 Examples

• Examples

– The vanilla univariate central limit theorem is a special case of the Lindeberg-Feller
central limit theorem when we have iid samples.

– See slides 40-44 applying Lindeberg-Feller for simple linear regression with a fixed
design. This example is also discussed in Amy Willis’s BIOST 533. Moreover, we
can find another Lindeberg-Feller example on the BIOST 533 final exam.

– Samples from standard multivariate normals have nice weak convergence results.
See Homework 2. The crux is to decompose the random vector into polar coordi-
nates and consider generic orthogonal transformations.

– Estimation of relative risk using a delta method. See end of Chapter 2 slides.

• Counterexamples

– Convergence in probability does not imply almost sure convergence. We consider
a sequence of indicators that splits [0,1] into halves, then thirds, then fourths, and
so on. As n gets large, this sequence of random variables converges in probability
to zero. However, the indicator is triggered infinitely often, so the sequence does
not converge almost surely to zero.

– Convergence in distribution does not imply convergence in probability. We con-
sider a sequence that converges weakly to a symmetric distribution.

– Dependent sequences that marginally converge weakly may not jointly converge
weakly. We consider sequences where the covariance between random variables
alternate between -1 and 1. With independence, marginal weak convergences
imply joint weak convergence.
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3 M-, Z- Estimation

We introduce two paradigms for deriving estimators for a parameter θ. M for “maximum” in
M -estimation involves maximizing a criterion function. Z for “zero” in Z-estimation involves
finding roots of a criterion function.

3.1 Definitions

• Empirical process notation provides shorthand

Pf ≡
∫
f(x) dP (x)

Pnf ≡
1

n

n∑
i

f(Xi)

• If φ0 ≡ φ(θ0) ∈ arg maxφ P0mφ, then φn ∈ arg maxφ Pnmφ is an M -estimator. More
generally, we consider M0 and Mn that do not have to be P0mφ and Pnmφ.

• If φ0 is a solution to P0zφ = 0, then the solution φn to Pnzφ = 0 is a Z-estimator. More
generally, we consider Z0 and Zn that do not have to be P0zφ and Pnzφ.

• We call {mφ : φ ∈ S ⊃ Im(Φ)} a P0-GC class if supφ |(Pn − P0)mφ| = oP (1)

• The bracketing number measures how complex the class of functions F is. See slides
21-26 for an introduction with application in the Glivenko-Cantelli theorem.

• The root density θ 7→ √pθ is differentiable in quadratic mean at θ if there exists a

pseudoscore function ˙̀
θ such that

sup
||h||=1

∫ (√
pθ+εh −

√
pθ

ε
− hT ˙̀

θ

2

√
pθ

)2

dµ
ε→0−→ 0

This definition is akin to differentiability except an integral is thrown into the mix. It
is exactly what we require to weaken the regularity condition of first and second order
differentiability for asymptotic normality. We say a model is QMD if its root density
is QMD. The pseudoscore is the score under reasonable conditions.

• The squared Hellinger distance is involved in QMD arguments.

H2(Pε, P0) ≡
∫ (
√
pε −

√
p0

)2

dµ

• L2(µ) contains µ-measurable functions f such that
∫
f 2dµ is finite. This space is

equipped with inner product and norm, so the triangle and reverse triangle inequalities
hold.
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3.2 Results

• Under conditions for Radon-Nikodym derivatives, the Kullback-Leibler divergence serves
as an mφ justifying maximum likelihood estimators as M -estimators.

• Under certain conditions, the M -estimation problem (maximizing) can be expressed
as a Z-estimation problem (root-finding). On the other hand, Mθ(φ) = −||Zθ(φ)||
expresses a Z-estimation problem as an M -estimation problem.

• Uniform consistency. Suppose that

(i) a near-maximizer for Mn is available: φn satisfies Mn(φn) ≥ supφMn(φ)− oP (1);

(ii) Mn is uniformly consistent: supφ |Mn(φ)−M0(φ)| →p 0; and

(iii) φ0 is well-separated: ∀ε > 0, M0(φ0) > sup||φ−φ0||>εM0(φ).

Then, φn →p φ0.

Finding a maximum is a good way to satisfy (i). In Homework 4 Problem 1(a), we
formulate a case where missing condition (iii) results in the conclusion not holding.

• Consistency of Z-estimators in one dimension. Let Im(Φ)⊂ R and, for all φ,
Zn(φ)→p Z0(φ). One or the other or both must hold:

(i) φ 7→ Zn(φ) is continuous and has one root φn.

(ii) φ 7→ Zn(φ) is nondecreasing and there is φn such that Zn(φn) = oP (1).

φ0 such that, for all ε > 0, Z0(φ0 − ε) < 0 < Z0(φ0 + ε) implies φn →p φ0.

This result is analogous to Homework 4 Problem 4(b).

• Glivenko-Cantelli theorems.

(i) If F is a class of functions with finite bracketing number for all ε > 0, F is P0-GC:

||Pn − P0||F ≡ sup
f
|(Pn − P0)f | = oP (1).

(ii) Suppose F ≡ {fφ : φ ∈ K} for K ⊂ Rd compact. If φ(x) 7→ fφ(x) is continuous
for all x and there is an envelope function F satisfying P0F < ∞ for which
supφ |fφ(x)| ≤ F (x) for all x, then the bracketing number is finite for ε > 0.

• Under regularity conditions, we have asymptotic normality for Z- and M -estimators.
Regularity conditions are assumptions required such that we achieve our desired result.
See Chapter 3 slides 29-36 and van der Vaart Theorems 5.21 and 5.23. Below we write
some of these regularity conditions for Z−estimation.
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(i) φ is an open subset of Rd;

(ii) E0||zφ0(X)||2 <∞;

(iii) φ 7→ Pzφ differentiable at zero φ0 with nonsingular Jacobian matrix Vφ0 ;

(iv) There exists function G satisfying P0G
2 <∞ so that, for all x and every φ and φ̃

in some neighborhood of φ0, ||zφ(x)− zφ̃(x)|| ≤ ||φ− φ̃||G(x);

(v) There exists φn satisfying Pnzφn = oP (n−1/2) and φn = φ0 + oP (1)

• Sufficient conditions for QMD. For every θ in an open subset of Rd, if

(i) The root density is continuously differentiable for every x

(ii) The information (matrix) is well-defined and continuous in θ

then the root density is QMD and the pseudoscore is the score.

• QMD implies that the score is mean zero and that the information (matrix) exists.

• Asymptotic normality of MLEs under QMD. We list the regularities required.

(i) The model is QMD at an inner point θ0 in Θ

(ii) There is a measurable function G with P0G
2 < ∞ such that for every θ1 and θ2

in a neighborhood of θ0

|`θ1(x)− `θ2(x)| ≤ G(x)||θ1 − θ2||

(iii) Iθ0 is nonsingular

(iv) MLE is consistent

Then,
√
n(θ̂ − θ0) = I−1

θ0

1√
n

∑
˙̀
θ0(Xi) + oP (1)⇒ N(0, I−1

θ0
)

3.3 Examples

• Method of moments estimators are Z-estimators.

• The sample median φn satisfies (1/n)
∑

i sign(Xi − φ) = 0 in one dimension.

• Location-scale families are QMD under assumptions. See Homework 4 Problem 2.

• See Homework 4 Problem 3 for some general QMD models.

11



Seth Temple
sdtemple@uw.edu Notes

STAT 580s
2020-2021

4 Hypothesis Testing

First, we compare the Wald, score (Rao), and likelihood ratio tests that all converge in
distribution to χ2 under regularity conditions. Second, we consider local alternatives where
in sampling from the alternative we maintain desirable properties for our estimators. See
Chapter 4 slides for the hypothesis testing framework.

4.1 Definitions

• The (randomized) test function φn(X) indicates when we reject the null.

• The power function πn(θ) = Eθ[φn(X)] measures the probability we reject the null.

• The size of the test is sup
θ0∈Θ0

πn(θ0).

• Q is absolutely continuous w.r.t. P means that P (A) = 0 implies Q(A) = 0.

• Qn is contiguous w.r.t Pn means that Pn(An)→ 0 implies Qn(An)→ 0.

• A local alternative is some θ + h/
√
n where h describes some (small) perturbation

from the null in an arbitrary direction.

• A regular estimator is an estimator whose sampling distribution is invariant to local
perturbations of the data-generating distribution.

4.2 Results

• Wald test. This test rejects the null when the estimate ψ̂ of ψ is far from zero. The
test statistic Wn ≡ nψ̂TAθ̂ψ̂ ⇒ χ2(m) under the null where m is the dimension of the
space ψ lives in. This test can be easy to implement when considering many hypotheses
because the we only find one MLE.

• Likelihood ratio test. This test rejects the null when the KL divergence is large.
The test statistic Ln ≡ 2nPn[`θ̂ − `θ̂0 ] ⇒ χ2(m). This test better controls the type 1
error in small samples.

• Score test. This test rejects the null when the empirical mean of the score is far from
zero. The test statistic Sn ≡ Zn(θ̂0)I−1

θ̂0
Zn(θ̂0)⇒ χ2(m). This test is easy to implement

because Θ0 is often a lower-dimensional space.

• The pairwise differences between these three tests converge in probability to zero under
the null hypothesis.
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• Le Cam’s First Lemma. This lemma helps us to show and characterize contiguity.
TFAE:

(i) Qn is contiguous w.r.t. Pn

(ii) Ln ≡ dQan
dPn

(Zn)
Pn⇒ V along a subsequence implies that E[V ] = 1.

(iii) dPan
dQn

(Zn)
Qn⇒ U along a subsequence implies that P (U > 0) = 1.

• Le Cam’s Third Lemma. This lemma shows us how to use contiguity when studying

alternatives. Suppose that Qn is contiguous w.r.t. Pn and (Tn, Ln)
Pn⇒ (T, V ). For all

measurable A ⊂ Rd, let R(A) = E[IA(T )V ]. Then R is a probability measure and

Tn
Qn⇒ R.

• Asymptotic normality of log likelihood ratio. Suppose logLn
Pn⇒ N(µ, σ2). Then

Qn is contiguous w.r.t. Pn if and only if µ = −σ2/2. This result emphasizes that it can
sometimes be useful to consider the weak limit of the log likelihood ratio.

• See van der Vaart Theorem 7.2 and Chapter 4 slides 30-40. With this theorem and
Le Cam’s Third Lemma, we derive results for Wald tests under local alternatives and
regular estimators.

• We achieve perfect asymptotic power at fixed alternatives. That is, if we collect enough
data, we will always reject a false null hypothesis.

• Wald statistic under local alternative. We assume the regularity conditions for
the asymptotic normality of the MLE. Then, the Wald statistic Wn has a noncentral
χ2(m) weak limit where the noncentrality parameter is hTψAθhψ. Because χ2 random
variables are stochastically increasing in their noncentrality parameter, the Wald test
achieves non-trivial power at local alternatives.

• We skipped the section on relative efficiency. See the final Chapter 4 slides.
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5 Optimality

We study when the MLE is an optimal estimator.

5.1 Results

• Pointwise asymptotic optimality. Suppose there is an estimator θn for each θ such

that
√
n(θn − θ)

θ⇒ Qθ. For any θ there exists another estimator θ̃n such that

√
n(θ̃n − θ′)

θ′⇒

{
Qθ′ θ′ 6= θ

δ0 otherwise

That is, we can always construct a dominating estimator sequence. The above is the
Hodges’ estimator. See graph in Chapter 5 slides and van der Vaart Chapter 8.

• Almost everywhere convolution. Assume a QMD model at every θ with nonsin-

gular information Iθ. Suppose
√
n(θn− θ)

θ⇒ Qθ for every θ. Then, for almost every
θ, there exists Mθ s.t.

Qθ ≡ Z + ε

where Z ∼ N(0, I−1
θ ) and ε ∼Mθ.

• Convolution for regular estimators. Let θn be a regular estimator sequence. Under
the same conditions as the a.e. convolution theorem, for all θ, there exists Mθ such
that

Qθ ≡ Z + ε

where Z ∼ N(0, I−1
θ ) and ε ∼Mθ.

• Anderson’s lemma. This theorem coupled with a convolution theorem shows that
the MLE is asymptotically optimal, i.e. achieves a lower bound. Let Z ∼ N(0,Σ) and
ε ∼M be independent. If the loss L is quasiconvex and centrally symmetric, then
E[L(Z)] ≤ E[L(Z + ε)].
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6 Minimax Lower Bounds

In nonparametric settings it is challenging to analytically derive optimal minimax risk. We
look at lower and upper bounds to determine an optimal minimax rate.

6.1 Definitions

• For rule T and model P the maximal risk is supP R(T, P ). The minimax rule has
the smallest maximal risk. Having small maximal risk means a rule will work well
irrespective of the true P . It can be difficult to derive the maximal risk.

• Let P = Qn restrict us to an iid model and Tn denote allowable decision rules given n.
A rule sequence {Tn} is minimax rate optimal if

lim inf
n→∞

infT∈Tn supQR(T,Qn)

supQR(Tn, Qn)
> 0

Establishing rate optimality involves knowing maximal risk of Tn and minimax risk.
This chapter contains methods to get lower bounds on minimax risk.

• The discrepancy d(P1, P2) between models is infa∈A{L(a, P1) + L(a, P2)}.

• The testing affinity ||p1 ∧ p2||1 for models P1, P2 � ν is∫
min

{
dP1

dν
,
dP2

dν

}
dν

Draw the two density curves on the same plot for further elucidation.

• The total variation distance TV(P1, P2) is supA∈A |P1(A)− P2(A)|.

• Integrated squared error is used as the loss for regression and density problems.

ISE(f̂ , f) =

∫
(f̂(x)− f(x))2 dx

• The Hölder class of functions is

F(β, L) ≡
{
f : |f (`)(x1)− f (`)(x2)| ≤ L|x1 − x2|β−`,∀x1, x2

}
where ` is the greatest integer less than β. So these functions are `-times differentiable
and satisfy some Lipschitz condition. Assuming this class is useful in smooth regression.
The Lipschitz condition here, Hölder continuity, fits into a continuity heuristic.

Continuously differentiable ⊆ Lipschitz continuous ⊆ Hölder continuous ⊆ continuous
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6.2 Results

• Max-min inequality. For any function f(x, y) with codomain R,

inf
y

sup
x
f(x, y) ≥ sup

x
inf
y
f(x, y)

• Maximal risk is ≥ Bayes risk and minimax risk is ≥ worst-case Bayes risk.

sup
P
R(T, P ) ≥ sup

Π
r(T,Π)

inf
T

sup
P
R(T, P ) ≥ sup

Π
inf
T
r(T,Π)

• Le Cam’s method. For any P1, P2 ∈ P ,

inf
T

sup
P
R(T, P ) ≥ .5 · d(P1, P2) · ||p1 ∧ p2||1 ≥ .25 · d(P1, P2) · exp{−KL(P1, P2)}

This method proposes a lower bound on minimax risk as a tradeoff between discrepancy
and testing affinity or likewise discrepancy and KL divergence. Using this method yields
a rate-optimal minimax lower bound for estimating a smooth density at a specific point.

• Fano’s method. For P1, · · · , PN ∈ P ,

inf
T

sup
P
R(T, P ) ≥ η

2

(
1−

log 2 +N−1
∑N

j=1 KL(Pj, P̄ )

logN

)
≥ η

2

(
1− log 2 + maxj 6=k KL(Pj, Pk)

logN

)
where P̄ is the uniform mixture and η is the minimum discrepancy. Using this method
yields a rate-optimal minimax lower bound for smooth regression problems.

• Eight or more lemma. This lemma from Varshamov and Gilbert suggests that
subsets of high-dimensional hypercubes exist such that the minimum Hamming distance
is large. Let Ω be an m-dimensional hypercube. If m ≥ 8, then |Ω| ≥ 2m/8 and the
minimum Hamming distance is ≥ m/8. We take advantage of the implied inequalities
in an example applying Fano’s method to a smooth regression problem.

• Pinsker’s inequality. For all distributions P1 and P2,

TV(P1, P2) ≤
√

KL(P1, P2)/2

This belongs to a distribution distances heuristic involved in bound arguments.

TV ≤ Hellinger distance ≤
√

KL ≤
√
χ2
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6.3 Examples

• KL(N(µ1, 1), N(µ2, 1)) = 1
2
(µ1 − µ2)2

• See slides 25-36 for applying Fano’s method to determine a tight lower bound for smooth
regression problems. The K function on slide 27 is a bump function and m ≤ 1/h− 1
such that bumps don’t overlap and the function is infinitely differentiable (very smooth).
At various points the argument is to redefine constant terms ci and/or massage known
inequalities like those from the Varshamov-Gilbert lemma.

• In this example the minimum Hamming distance appears in formulas for the discrep-
ancy and the KL divergence. The Hamming distance is the number of discordant
positions when comparing two byte strings.

• Applying Le Cam’s two-point method:

– For the mean θ of Rademacher random variables we derive r?n = n−1

– Density estimation from a Lipschitz class and normal errors we derive r?n = n−1/3

• Total variation TV is difficult to work with, so we often work with KL divergence via
Pinsker’s inequality. When the KL divergence is large, an alternative bound provides
a tighter lower bound for Le Cam’s method.

• The lower bound minimax rate for estimating Hölder(β, L) density at a point is n−
2β

2β+1 .

Figure 1: Distance metrics for probability distributions.
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Below and on the previous page I share from Wasserman’s Chapter 36 on minimax theory.

Figure 2: Relationships between probability distances.

Figure 3: Relationships between probability distances.
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7 Kernel Density Estimation

Kernel density estimators offer a upper bound for smooth density estimation that matches
the lower bound rate, completing the argument for an optimal rate.

7.1 Definitions

• A kernel K : R → R satifies that
∫
K(u) du = 1. A kernel density estimator takes

form

f̂h(x) =
1

nh

n∑
i=1

K

(
Xi − x
h

)
where bandwidth h is a tuning parameter. The bandwidth controls the smoothness
of the KDE, subsequently impacting the bias-variance tradeoff. Large h results in more
smoothing, larger bias, and smaller variance. Small h results in less smoothing, smaller
bias, and larger variance.

• Up to s− 1, the moments of an sth-order kernel are zero and the sth moment is finite.

• Twicing is when we combine two related KDEs to get a KDE more amenable to
confidence intervals based on asymptotic normality.

4f̂h(x)− f̂2h(x)

3

7.2 Results

• The empirical cumulative distribution function is a good estimator for the CDF. How-
ever, it is a step function, so its derivative is not an ideal estimator for the density.

• Kernel density estimators for Hölder(β, L) smooth densities achieve upper bound rate

r?n � n−
2β

2β+1

Thus, the rate r?n is an optimal rate for Hölder(β, L) density estimation. We arrive at

this upper bound by setting hn ∝ n−
1

2β+1 , a compromise in managing bias squared and

variance. For d-dimensional densities, the rate is modified to n−
2β

2β+d . An example of
the “curve of dimensionality”.

• Kernel density derivative estimators have MSE bounded at rate n−
2(β−1)
2β+1
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7.3 Examples

Here in two figures we see common kernels used in kernel density estimation.

Figure 4: Functional forms for common kernels.

Figure 5: Graphs for common kernels.
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8 Concentration Inequalities

Here we study assurances that finite samples are concentrated about their mean.

8.1 Definitions

• A random variable X is sub-Gaussian if its tails are lighter than Gaussian tails.
Parameterized with σ2, for all λ ∈ R it holds that

logMX−E[X](λ) ≤ λ2σ2

2

• A nonnegative random variable X is subexponential if its tails are lighter than ex-
ponential tails. Parameterized with σ2 and b, for all |λ| < 1/b it holds that

logMX−E[X](λ) ≤ λ2σ2

2

• A Rademacher random variable puts 1/2 weight on 1 and 1/2 weight on -1. It is like
a Bernoulli random variable but with support {−1, 1}.

• A function f satisfies the bounded differences property (BDP) if for all i there is
some finite ci such that

|f(x1, . . . , xi−1, xi, xi+1, . . . , xn)− f(x1, . . . , xi−1, xi′ , xi+1, . . . , xn)| ≤ ci

This property says that f cannot rely too much on any single input.

8.2 Results

• Markov’s inequality. Let X be a nonnegative random variable with finite expected
value. For t > 0,

P (X ≥ t) ≤ E[X]

t

• Markov’s corollary. Let f be a nondecreasing function on nonnegative values and
E[f(|X − E[X]|)] finite. Extending Markov’s inequality, for t > 0,

P (|X − E[X]| ≥ t) ≤ E[f(|X − E[X]|)]
f(t)

This corollary shows us how to build on Markov’s inequality to generate bounds on
higher moments, e.g. Chebyshev’s inequality and the Chernoff bound.
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• Chernoff bound. Suppose X has moment generating function in a neighborhood of
zero. For t > 0 and λ ∈ (0, b],

P (X − E[X] ≥ t) ≤ E[exp{λ(X − E[X])}]
eλt

=
MX−E[X](λ)

eλt

P (X − E[X] ≥ t) ≤ inf
λ>0

MX−E[X](λ)

eλt

• Additivity of subexponentials and sub-Gaussians. This property is inherited
as a property of moment-generating functions when we have independent random vari-
ables. See discussion on page 29 of Wainwright (2019). For independent subexponential
X1, . . . , Xn with parameters (σ2

i , bi), the sum of these is subexponential with parameters
(
∑n

i=1 σ
2
i ,maxi bi).

• Hoeffding’s inequality. This inequality applies to random variables with bounded
support [a, b]. These random variables are sub-Gaussian with σ2 = (b − a)2/4. The
second statement uses independence to extend the result to a sample mean.

logP (X − E[X] ≥ t) ≤ − 2t2

(b− a)2

logP (X̄n − E[X̄n] ≥ t) ≤ − 2n2t2∑n
i=1(bi − ai)2

• Tail bound for subexponentials. If X is subexponential with parameters (σ2, b),

logP (X − µ ≥ t) ≤

{
− t2

2σ2 , 0 ≤ t ≤ σ2/b

− t
2b
, t > σ2/b

This result suggests that the (right) tail probability in the exponent is quadratic in t
for small t and linear in t for large t. See an alternative presentation with proof as
Proposition 2.9 from Wainwright (2019).

• Bernstein’s inequality. LetX have finite variance σ2 and be bounded s.t. |X−µ| ≤ b.
For all t > 0 we have

P (X ≥ µ+ t) ≤ exp

(
− t2

2(σ2 + bt)

)
If we have an independent collection of random variables so bounded and with possibly
unique mean and finite variances, then for all t > 0

P (X̄n ≥ E[X̄n] + t) ≤ exp

(
− t2

2(bt+
∑n

i=1 σ
2
i /n)

)
Bernstein’s may be tighter than Hoeffding’s when variances are small.
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• Bernstein’s expectation bound. Suppose we have a Bernstein-like tail inequality for
nonnegative X. In Homework 3 Problem 1 we show

E[X] ≤ 2σ(
√
π +

√
logC) + 4b(1 + logC)

where σ2, b > 0 and C ≥ 1.

• Bennet’s inequality. Given independent X1, . . . , Xn with zero mean, Xi ∈ [−b, b], and
variances σ2

i ,

P (X̄ ≥ t) ≤ exp

(
− nσ̄2

b2
h

(
bt

σ̄2

))
where σ̄2 = 1/n

∑n
i=1 σ

2
i and h(y) = (1 + y) log(1 + y)− y for y ≥ 0. This inequality is

at least as tight as Bernstein’s. See Exercise 2.7 in Wainwright for a walkthrough.

• Efron-Stein inequality. Let f : X → R, and assume independent random variables.

Var(f(X)) ≤ 1

2

n∑
i=1

E[(f(X)− f(X(i)))2]

=
n∑
i=1

E[(f(X)− E[f(X)|X(i)])2]

Further assumptions on f enable nicer forms on the bound. See homework 2. Proving
this involves a novel strategy.

• Bounded differences inequality. Let X = (X1, . . . , Xn) be an independent collec-
tion of random variables and f satisfy BDP with bounds c1, . . . , cn. For t > 0 and
E[|f(X)|] finite,

P (|f(X)− E[f(X)]| ≥ t) ≤ 2 exp

{
− 2t2∑n

i=1 c
2
i

}
This inequality is referred to as McDiarmid’s inequality. Proving it involves a novel
telescoping argument and the Azuma-Hoeffding inequality. See slides 34-39.

• Martingale differences inequality. Consider the martingale difference sequence:

D1 = E[f(X)|X1]− E[f(X)]

D2 = E[f(X)|X1, X2]− E[f(X)|X1]

...

Dn = E[f(X)|X1, . . . , Xn]− E[f(X)|X1, . . . , Xn−1]

Further assume the conditions of the bounded differences inequality. Then,

P

(∣∣∣∣ n∑
i=1

Di

∣∣∣∣ ≥ t

)
≤ 2 exp

{
− 2t2∑n

i=1 c
2
i

}
This inequality is referred to as the Azuma-Hoeffding inequality.
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8.3 Examples

• Sub-Gaussian random variables.

– Gaussian

– Beta

– Uniform

– Any bounded random variable

• Not sub-Gaussian random variables.

– Double-exponential

– Student t

– Cauchy

• Subexponential random variables.

– Exponential

– Gaussian

– χ2

• Not subexponential random variables.

– Log-Normal

– Weibull

– Pareto

– Not sub-Gaussian random variables

• See Examples 2.11 and 2.12 in Wainwright (2019). Together these examples show how
to reduce dimension based on a random projection while maintaining certain guarantees
about the dimension reduction. This is done by leveraging properties of subexponential
χ2 random variables.

• See Slides 14-16 from Chapter 3 for a discussion of the Chernoff bound for normal
random variables being in some sense aymptotically tight. Additionally, this example
shows how to derive MGFs using a change of variables.
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9 Empirical Risk Minimization (ERM)

We establish tools to bound the regret in ERM by bounding empirical process terms, e.g.
bounding the Rademacher complexity.

9.1 Definitions

• For a set Θ, an empirical risk minimizer θ̂ is such that P`(θ̂) is close to infθ∈Θ P`(θ),
denoting θ0 here as the arg min. In decision theory, we talk about θ as a parameter that
characterizes a parametric family. As a result, we look explicitly at the discrepancy
between θ̂ and θ. Here we instead look at differences in expectation, introducing the
term regret:

Reg(θ̂) = P (`(θ̂))− P (`(θ0))

• A ghost sample is an independent (copy) sample X ′1, . . . , X
′
n used in Rademacher

symmetrization arguments. See Chapter 4 Part 1 Slides 13-18 for this technique.

• Let ε1, . . . , εn be Rademacher random variables, and define the Rademacher process

Rn :=
1

n

n∑
i=1

εif(Xi)

We denote ||Rn||F := supf∈F |Rn(f)| and call E ||Rn||F the Rademacher complexity.

• The growth function or shattering number measures the richness of the class F

ΠF(n) := sup
x1,...,xn

|Fx1,...,xn|

We discuss shattering in the context of function classes or sets. We say n points are
shattered by F if ΠF(n) = 2n. Below are some properties of growth functions.

– ΠA(n+m) ≤ ΠA(n) ΠA(m)

– ΠA∪B(n) ≤ ΠA(n) + ΠB(n)

– ΠA∪B:A∈A,B∈B(n) ≤ ΠA(n) ΠB(n)

– ΠA∩B:A∈A,B∈B(n) ≤ ΠA(n) ΠB(n)

• The Vapnik-Chervonenkis (VC) dimension is the largest n such that a function
class still shatters n points. The VC index is one plus the VC dimension, i.e. the first
n such that a function class can’t shatter n points. Write VC(F) as VC dimension of
F . We say a function class F (or set A) is VC if it has finite VC dimension. VC theory
is for classification problems.
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• For r ≥ 1, Lr(P ) is the space of functions f s.t. ||f ||Lr(P ) := (
∫
|f(x)|r dP (x))1/r <∞.

The sup norm or uniform norm is supf∈F |f |.

• A Glivenko-Cantelli (GC) theorem is one where the implication is ||Pn−P ||F = oP (1).

• A bracket [`, u] is the set of f ∈ F s.t. ` ≤ f ≤ u pointwise. An ε-bracket is a bracket
[`, u] satisfying ||u − `||Lr(P ) ≤ ε. The bracketing number N[](ε,F , Lr(P )) is the
minimum cardinality of ε-brackets required to cover function class F .

• A pseudometric d, related to a metric, has ii) symmetry and iii) triangle inequality,
but does not have i) the identity of indiscernibles. d(x, y) = 0 does not imply x = y.
This is a more flexible quantity for discussing functions in Lr(P ) space.

• A subset T1 of a pseudometric space T is an ε-cover if for each θ ∈ T there is θ1 ∈ T1

s.t. d(θ1, θ) ≤ ε. Visually, T is a subset of a union of ε-balls centered at point in
T1. The ε-covering number N(ε, T, d) is the minimum cardinality among possible
ε-covers. The logarithm of the ε-covering number is refered to as the metric entropy.
(We say T is totally bounded if for all positive ε there exists a finite ε-cover.)

• A subset T1 of a pseudometric space T is an ε-packing if d(θ, θ′) > ε for each pair
θ, θ′ ∈ T1. Visually, ε-balls centered at points in T1 do not overlap. The ε-packing
number M(ε, T, d) is the maximum cardinality among possible ε-packings.

• A stochastic process {Xθ : θ ∈ T} is a collection of (indexed) random variables. It is
zero-mean if E[Xθ] = 0 for all indices θ. It is sub-Gaussian w.r.t. d if, for all pairs
θ, θ′ ∈ T and for all λ ∈ R,

E[exp{λ(Xθ −Xθ′)}] ≤ exp

(
λ2d(θ, θ′)

2

)
This generalizes sub-Gaussianity from Section 8 to stochastic processes.

• The canonical Rademacher process is a zero-mean, sub-Gaussian random process:

Xθ =
n∑
i=1

θiεi = 〈θ, ε〉

The canonical Gaussian process is a defined in the same fashion with ε1, . . . , εn being
standard normals instead of Rademachers.

• The diameter D of a (pseudometric) space T is supθ,θ′ d(θ, θ′).

• An envelope function F for f ∈ F is s.t. |f | ≤ F pointwise.
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9.2 Results

• Regret bound. See slides 9 and 10 for explanation of notation.

0 ≤ Reg(θ̂)

≤ (Pn − P )(`(θ0)− `(θ̂))
≤ 2 sup

f∈F
|(P − n− P )f |

= 2 ||Pn − P ||F
Often we bound ||Pn − P ||F or ||Rn||F , but this loosening may be suboptimal. In
Homework 5(c) we attained a tighter bounded working with (Pn − P )(`(θ0)− `(θ̂)).

• Symmetrization bound. We relate ||Pn − P ||F to the Rademacher process via a
symmetrization argument.

E ||Pn − P ||F ≤ 2E ||Rn||F

Here the argument precedes by introducting the ghost sample, recognizing that |εi| = 1,
and applying the triangle inequality. A related lower bound is available by desym-
metrization (similar strategy).

• Tight control using Rademacher complexity. If F is a class of [0,1]-valued functions,

1

2
E ||Rn||F −

√
log 2

2n
≤ E ||Pn − P ||F ≤ 2E ||Rn||F

With probability 1− 2 exp(−2nt2), for all t > 0

E ||Pn − P ||F − t ≤ ||Pn − P ||F ≤ E ||Pn − P ||F + t

The second result uses the first result and applies McDiarmids’ BDP inequality.

• Counting operations. For a family of boolean-valued functions

F = {x 7→ f(x, θ : θ ∈ Rp)},

where each f : Rm×Rp → {0, 1}, suppose f is computed in no more than t arithmetic
or comparison operations. Then, VC(F) ≤ 4p(t+ 2).

• Finite class lemma. If F is a function class s.t. |f(x)| ≤ 1,

E ||Rn||F ≤
√

2 log(2E |FXn
1
|)

n

This pivotal result provides a bound for the Rademacher complexity when F is a
bounded function class. The proof strategy is to condition on Xn

1 , use Jensen’s and
sub-Gaussianity to loosen the bound, and then integrate over Xn

1 . When F is VC,

E ||Pn − P ||F ≤ 2E ||Rn||F ≤ 2
√

2 log(2ΠF(n))/n
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• Generalized finite class lemma. If {Xθ : θ ∈ T} is sub-Gaussian w.r.t. d and
A ⊆ T × T ,

E max
(θ,θ′)∈A

(Xθ −Xθ′) ≤
√

2 log |A| · max
(θ,θ′)∈A

d(θ, θ′)

• Sauer’s lemma. If VC(F) ≤ d, then we have two bounds on the growth function.

ΠF(n) ≤
d∑

k=0

(
n

k

)

ΠF(n) ≤

{
2n, n ≤ d

(e1n/d)d, n > d

Past the VC dimension, we’re only polynomial in n. When VC(F) ≤ d < n,

E ||Pn − P ||F ≤ 2E ||Rn||F ≤ 2
√

(2 log(2) + 2d log(e1n/d))/n

• Standard Glivenko-Cantelli. If N[](ε,F , L1(P )) finite for every positive ε, then

||Pn − P ||F = oP (1)

• More general GC. If the sup metric entropy over all discrete distributions Q is finite
for all positive ε and f ∈ F have range in [−M,M ],

||Pn − P ||F = oP (1)

• Covering versus packing. For all ε > 0,

M(2ε, T, d) ≤ N(ε, T, d) ≤M(ε, T, d)

• Bracketing versus covering. Let F be a subset of some Lr(P ) space. For ε > 0,

N[](2ε,F , Lr(P )) ≤ N(ε,F , || · ||∞)

• Discretization bound. Let {Xθ : θ ∈ T} be a zero-mean, sub-Gaussian process, and
let D be the diameter of T . For all positive ε,

E sup
θ∈T

Xθ ≤ 2E sup
d(θ,θ′)≤ε

(Xθ −Xθ′) + 2D
√

logN(ε, T, d)

We achieve this by a ± trick, loosening with sup, and applying a finite class lemma.
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• Chaining bound. Same setup as for the discretization bound. For all positive ε,

E sup
θ∈T

Xθ ≤ E sup
d(θ,θ′)≤ε

(Xθ −Xθ′) + 8

∫ D

ε/2

√
log(N(δ, T, d)) dδ

For separable stochastic processes,

E sup
θ∈T

Xθ ≤ 8

∫ D

0

√
logN(δ, T, d) dδ

Alex offered an extra lecture on proving the separable case. We achieve this by iter-
atively applying a finite class lemma in a clever way. This bound is generally tighter
than the discretization bound.

• Chaining to control Rademacher complexity. If F is closed under negations,

E ||Rn||F ≤ 8n−1/2 E
∫ ∞

0

√
logN(δ,F , L2(Pn)) dδ ≤ 8n−1/2 sup

Q

∫ ∞
0

√
logN(δ,F , L2(Q)) dδ

• Bracketing integral bound. There is a universal positive constant C s.t for any class F
with envelope function F ,

E ||Pn − P ||F ≤ Cn−1/2 ||F ||L2(P )

∫ 1

0

√
logN[](δ||F ||L2(P ),F , L2(P )) dδ

9.3 Examples

• Vapnik-Chervonenkis (Some visuals)

– Dimension/index (Homework 3 Problem 4)

∗ {(−∞, b] : b ∈ R} has VC index 2.

∗ {(−∞, b1]× (−∞, bd] : b1, . . . , bd ∈ R} has VC index d+ 1

∗ {(a1, b1]× (a1, , bd] : a1, . . . , ad, b1, . . . , bd ∈ R} has VC index 2d+ 1

∗ {(a, b] : a, b ∈ R} has VC index 3.

∗ {(a1, b1]× (a2, b2] : (a1, a2), (b1, b2) ∈ R2} has VC index 5.

∗ {x 7→ g(x− θ) : θ ∈ R, g : R→ R monotone} has VC index 2.

∗ Collection of convex sets in R2 has VC index ∞.

∗ {x ∈ R2 : ||x− a||2 ≤ b} has VC index 4.

– Applying the “counting operations” lemma

∗ Linear threshold class is VC

∗ Neural network classifiers are VC and we can attain probabilistic guarantees
for regret (Homework 4 Problem 2)
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– Permanence of VC classes (Homework 4 Problem 1)

∗ {{x : f(x) > 0} : f ∈ F}
∗ {{x 7→ f(x) + g(x)} : f ∈ F , g fixed}
∗ {{x 7→ f(x)g(x)} : f ∈ F , g fixed}

• Permanence of Rademacher complexity (Homework 3 Problem 2)

– E ||Rn||F = E ||Rn||conv(F)

– E ||Rn||F+G ≤ E ||Rn||F + E ||Rn||G
– E ||Rn||F+f0 ≤ E ||Rn||F + n−1/2 ||f0||∞ for uniformly bounded f0

• Permanence of Glivenko-Cantelli classes (Homework 3 Problem 3)

– {x 7→ af(x) + bg(x) : f ∈ F , g ∈ G, (a, b) ∈ [−1, 1]2}
– F ∪ G
– functions that are pointwise limit and L1(P )-limit of a sequence in F

• Bracketing

– Proving the standard GC theorem (Chapter 4 Part 2 Slides 5-8)

– Homework 4 Problem 3 (very hard, see solutions)

– Sobolev classes (not covered, Chapter 4 Part 2 Slides 58)

– Various examples in vdV textbook (Chapter 19)

• ε-covering

– For a bounded r-dimensional set N(ε) � ε−r for any `p metric

– (r/ε)d ≤ N(ε, Bd(0, r), `p) ≤ (2r/ε+ 1)d

– N(ε,F , || · ||F) ≤ N(ε/L,B, || · ||b) for F := {x 7→ f(x, β : β ∈ B)} with an
L-Lipschitz condition (Chapter 4 Part 2 Slides 17-18)

– logN(ε,F , || · ||∞) = Θ(L/ε) for L-Lipschitz [0, 1]→ [0, 1] functions

– logN(ε,F , || · ||∞) = Θ((L/ε)d) for L-Lipschitz [0, 1]d → [0, 1] functions

– logN(ε,Fzn1 ∪ −Fzn1 , `2) = logN(εn−1/2,F ∪ −F , L2(Pn))

– Homework 4 Problem 4 (very hard, see solutions)

– Various examples in Wainwright textbook (Chapters 4 and 5)

• ε-packing

– M(ε, Bd(0, r), `p) ≤ (3r/ε)d

– Any ε-covering example can be translated to be an ε-packing example
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• The one-step discretization bound for the canonical Rademacher process provides

E sup
θ∈T

Xθ ≤ 2n1/2δ + 2D
√

logN(δ, T, `2)

• The one-step discretization bound for Rademacher complexity provides

E ||Rn||F ≤ 2δ + 2E[DZn1
]n−1 sup

Q

√
log 2N(δ,F , L2(Q))
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10 Weak Convergence

We study the properties and applications of classes of random functions for which a uniform
central limit theorem is available. (This section begins the transition from instructor Alex
Luedtke to instructor Marco Sadinle.)

10.1 Definitions

• The empirical process Gn is
√
n(Pn − P ). When we apply it to functions f ∈ F , we

get a random variable. We study the stochastic process {Gnf : f ∈ F}.

• For measurable f and possibly nonmeasurable X, the outer expectation is

E∗[f(X)] = inf{E[U ] : U measurable, U ≥ f(X), and E[U ] exists}

A similar definition works for inner expectation E∗. Outer and inner probabilities can be
defined using indicator functions. The measurability concerns related to these notions
we do not cover.

• A stochastic process Xn on F is called asymptotically uniform ρ-equicontinuous
if, for all positive sequences δn → 0 and F(δn) = {(f1, f2) : f1, f2 ∈ F , ρ(f1, f2) < δn},

sup
f1,f2∈F(δn)

|Xn(f1)−Xn(f2)| = oP (1)

Here the pseudometric ρ is important. With this sense of uniform continuity and
convergence in distribution of marginals, we achieve a weak convergence.

• A random variable X is tight if for every ε > 0 there is a compact set K such that
P (X ∈ K) ≥ 1− ε.

• An envelope function F̄ is such that supf∈F |f(x)| ≤ F̄ (x) for all x.

• If Gn  G in `∞(F) where G is tight, then F is called P0-Donsker. This G is a mean-
zero Gaussian process with covariance (f, g) 7→ EP0 [GfGg] = P0(fg)− P0(f)P0(g). A
pseudometric guaranteed to exist is the standard deviation pseudometric:

ρ0 : (f1, f2) 7→
√
P0((f1 − f2)2)− (P0(f1 − f2))2.

• The variation norm of f : R → R is ||f ||V =
∫
|df(x)|. This measures all movement

along the y-axis. The uniform sectional variation norm ||f ||∗V of a function f : Rm → R
generalizes this univariate definition by considering generalized Riemann differences in
slices. See slide 19 from chapter 0 notes, with special attention to the m = 2 case. See
van der Laan’s 1996 thesis for more details.
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10.2 Results

• Generalized portmanteau. Let X1, X2, . . . be a sequence of arbitrary maps and X
be another (random) map, all taking values in metric space (D, d). Weak convergence
Xn  X has many equivalent characterizations:

– E∗[f(Xn)]→ E[f(X)] for all bounded, continuous f .

– E∗[f(Xn)]→ E[f(X)] for all bounded, Lipschitz-continuous f .

– lim supn E∗[f(Xn)] ≤ E[f(Xn)] for every upper semicontinuous f bounded above.

– lim infnE∗[f(Xn)] ≥ E[f(X)] for every lower semicontinuous f bounded below.

– lim supn P
∗(Xn ∈ F ) ≤ P (X ∈ F ) for all closed F .

– lim infn P∗(X ∈ O) for all open O.

– P ∗(Xn ∈ B)→ P (X ∈ B) for all continuity sets B.

This result is vdV Theorem 18.9 in the blue book. It is similar to our portmanteau
theorem from our second section, but we use outer/inner expectations and probabilities
for possibly nonmeasurable maps.

• Generalized continuous mapping. Let (D, d) and (E, e) be metric spaces. Suppose
that X1, X2, . . . are D-valued random variables, and that X is a D0-valued random
variable with D0 ⊆ D. Let f : D → E be continuous on D0. Then, Xn  X in D
implies f(Xn) f(X) in E.

• Weak convergence equivalency. Xn converges weakly in `∞(F) to a tight random
variable X if and only if

1. for each {fj : j = 1, 2 . . . ,m} ⊆ F we have {Xn(fj)} {X(fj)};
2. there exists a pseudometric ρ on F such that

– (F , ρ) is totally bounded;

– Xn is asymptotically uniform ρ-equicontinuous.

The first condition is convergence in distribution of marginals. The second condition is
the existence of a suitable pseudometric such that F is not too rich and Xn is sufficiently
smooth. This result is from Theorems 1.5.4 and 1.5.7 of vdV&W (1996).

• A Slutsky result for . LetX1, . . . and Y1, . . . be sequences of `∞(F)-valued random
variables for some function class F . If Xn  X for some tight `∞(F)-valued X and
||Xn − Yn||F = oP (1), then Yn  X as well. (See Homework 0 Problem 1.)

• Controlling empirical process terms. To say that Gnfn = oP (1), it is sufficient to
show (1) P0f

2
n = oP (1) and (2) fn is in a P0-Donsker class. (This is vdV lemma 19.24.

Also, see Homework 0 Problem 2.)
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• Establishing Donsker classes. There are four strategies to establish a Donsker class.
The brute force approach is work with the definition. The other three approaches
involve entropy, permanence, and bounded variation. Entropy arguments via 582-type
arguments are non-intuitive and challenging. Permanence arguments construct new
Donsker classes from existing Donsker classes. Bounded variation arguments may be
the most useful.

– F is P0-Donsker if the bracketing integral J[](1,F , L2(P )) is finite.

J(δ,F , L2(P )) =

∫ δ

0

√
logN[](ε,F , L2(P )) dε

– F is P0-Donsker if it has envelope F̄ satisfying P0(F̄ 2) <∞ and it has a uniform
entropy bound. See slide 15 from Marco’s Chapter 0 and slide 57 from Alex’s
Chapter 4.2.

– Let F1, . . . ,Fk be P0-Donsker classes with ||P0||Fj < ∞ for j = 1, 2, . . . , k. Let
φ : Rk → R for which there is C > 0 such that

|φ(f(x))− φ(g(x))|2 ≤ C
k∑
j=1

|fj(x)− gj(x)|2

for every f, g ∈ {F1, . . . ,Fk} and x ∈ X . Then, φ ◦ (F1, . . . ,Fk) is P0-Donsker
provided φ ◦ (f1, . . . , fk) is P0-square integrable for some (f1, . . . , fk).

∗ If F and G are P0-Donsker classes and ||P0||F∪G finite, then pairwise infima
F ∧ G, pairwise suprema F ∨ G, and pairwise sums F + G are P0-Donsker
classes.

– For each positive constant M0, {f : B ⊆ Rm → R : ||f ||∗V ≤ M0, P0(1B) = 1} is a
P0-Donsker class.

∗ ||c · f ||∗V = c ||f ||∗V for any constant c > 0;

∗ ||f1 + f2||∗V ≤ ||f1||∗V + ||f2||∗V ;

∗ if f1 and f2 are bivariate cadlag functions, then |
∫
f1df2| ≤ 16 ||f1||∗V ||f2||∞;

∗ if f is bivariate, ||f ||∗V <∞, and f > δ > 0, then ||f−1||∗V <∞.
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10.3 Examples

• Donsker classes from bounded variation approach

– indicators for half-lines (−∞, x] for x ∈ R;

– indicators for quarter-planes in R2;

– univariate uniformly bounded and monotone functions;

– primitives of integrable multivariate functions;

– differentiable multivariate functions with uniformly bounded derivatives and de-
fined over bounded region.

• Donsker implies GC

– F := {1(−∞,x]) : x ∈ R} is Donsker and GC.

– F := {all monotone f : R→ [0, 1]} is Donsker and GC.

– F := {1A : A ⊆ [0, 1]3 convex} is GC but not Donsker for any P0 on [0, 1]3 with
bounded Lebesgue density.

– F := {1A : A ⊆ R, |A| <∞} is not GC and therefore not Donsker.
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11 Asymptotic Study of Estimators

We establish language and results to talk about the asymptotic properties of estimators,
especially to discuss joint behavior of two or more estimators.

11.1 Definitions

• Estimator ψn of ψ0 based on X1, . . . , Xn ∼ P0 ∈ M is said to be asymptotically
linear if there is a function x 7→ φP0(x) such that

1. φP0(X) is mean-zero and has finite variance;

2. ψn−ψ0 = 1
n

∑n
i=1 φP0(Xi)+oP (n−1/2), where φP0 is the influence function. The

influence function expresses the extent to which outliers affect the estimator.

• The sandwich variance estimator in this context is

Σ̂ :=
1

n

n∑
i=1

φP̂ (Xi)φP̂ (Xi)
T ,

where P̂ is a consistent estimator of P0.

• A V -statistic is an estimator for some generalized moment of a distribution; namely,

V (P ) :=

∫
· · ·
∫
H(x1, . . . , xm) dP (x1) . . . dP (xm)

Vn := Pm
n H

for some kernel function H. V -statistics may be biased in finite samples.

• A U -statistic is an unbiased estimator for some generalized moment of a distribution;

Un :=

(
n

m

)−1 ∑
im∈Dm,n

H(Xi1 , . . . , Xim)

Dm,n := {im ⊆ {1, . . . , n} : i1 < · · · < im}

• Let P be a convex collection of distributions on R. Given F ∈ P , let Q(F ) be the
vector space {c(F1 − F ) : c ∈ R;F1 ∈ P} equipped with some norm ρ. A function
Ψ : P → R is ρ-continuous at F̃ if, for any sequence {F̃1, . . . } ⊆ P , ρ(F̃n − F̃ ) → 0
implies Ψ(F̃n)→ Ψ(F̃ ). This generalizes continuity for functionals.

• For any direction h ∈ Q(F ), the Gâteaux derivative of Ψ at F ∈ F is

Ψ̇(F ;h) := lim
ε→0

[
Ψ(F + εh)−Ψ(F )

ε

]
=

d

dε
Ψ(F + εh)

∣∣∣∣
ε=0
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A functional Ψ is Gâteaux differentiable at F ∈ F if Ψ̇(F ;h) exists for all h ∈ Q(F )
and h 7→ Ψ̇(F ;h) is a linear functional.

• We study first-order representations like

Ψ(Fn)−Ψ(F0) = Ψ̇(F0;Fn − F0) + n−1/2Rn

Rn := RF0,εn(hn) = RF0,n−1/2(n1/2(Fn − F0))

RF,ε :=
Ψ(F + εh)−Ψ(F )

ε
− Ψ̇(F ;h)

If Rn = oP (1), we have asymptotic linearity. For this generalized asymptotic linearity
of functionals, we require the above functional delta method.

• Suppose remainder term RF,ε tends to zero uniformly for h ∈ H and H ∈ H a collection
of subsets of Q(F ). That is, for each H ∈ H,

lim
ε→0

[
sup
h∈H
|RF,ε(h)|

]
= 0

We name different senses of uniform differentiability.

– Singleton (Gâteaux) differentiability: H = {singleton subsets of Q(F )}
– Compact (Hadamard) differentiability: H = {compacts subsets of (Q(F ), ρ)}
– Bounded (Fréchet) differentiability: H = {bounded subsets of (Q(F ), ρ)}

11.2 Results

• Delta method for influence curves. Let ψn be an asymptotically linear estimator of
ψ0 ∈ Rp with influence curve φP0 . Suppose that h is differentiable at ψ0 with h′(ψ0) 6= 0.
Then,

h(ψn)− h(ψ0) =
1

n

n∑
i=1

h′(ψ0)TφP0(Xi) + oP (n−1/2),

where x 7→ h′(ψ0)TφP0(x) is the new influence function.

• Delta method with a nuisance. Let X1, . . . , Xn
iid∼ P0. Consider some estimating

equation U(ψ, η)(x) such that (1) ψ0 is the unique solution P0U(ψ, η0) = 0, (2) ψn
is a near-solution (PnU(ψn, ηn) = oP (n−1/2)), and (3) ηn is an asymptotically linear
estimator of η0 with influence function ϕP0 . Then, provided some further regularity
conditions, ψn is an asymptotically linear estimator of ψ0 with influence function

φP0(x) := −
(
∂

∂ψ
P0U(ψ, η0)

∣∣∣∣
ψ=ψ0

)−1[
U(ψ0, η0)(x) +

∂

∂η
P0U(ψ0, η)

∣∣∣∣
η=η0

ϕP0(x)

]
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• Linearity of V -statistics. From a series of algebraic manipulations (see note 3), we
obtain a linearization for V -statistics. That is,

Vn − V0 =
m∑
k=1

(
m

k

)
(Pn − P0)kHk

where Hk = Pm−k
0 H. m(H1(X)− V0) is the influence function when Var0(H1(X)) 6= 0.

• Setting τ 2
k := Var0(Hk(X1, . . . , Xk)),

Var0(Un) =
a!

na

(
m

a

)2

+O(n−(a+1))

where a := min{k ≥ 1 : τ 2
k > 0}. We say Un is nondegenerate if a = 1 and degenerate

of order a−1 otherwise. Un and Vn are asymptotically equivalent under nondegeneracy.

• Bounded implies compact implies singleton differentiability.

• Remainder Rn = oP (1) if either Ψ is compact differentiable at F0 relative to the supre-
mum norm or Ψ is bounded differentiable w.r.t. some ρ and ρ(Fn − F0) = OP (n−1/2).

• (Pn − P0)f = Pnf − P0f = Pnf − PnP0f = Pn(f − P0f). This may be a term in an
influence function after expanding terms with the ± trick.
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11.3 Examples

• Asymptotically linear estimators

– Sample mean

– Sample variance

– Estimating equation-based estimator

– Sample quantile

– Sample coefficient of variation

– Average absolute deviation from mean

– Inverse-probability-weighted estimator (for missing data)

– U, V -statistics

• V-statistics

– Variance

– Kendall’s tau

– Cramer-von Mises goodness of fit

– Wilcoxon signed rank statistic (vdV 12.4)

– Mann-Whitney statistic (vdV 12.7)

– Numerator of AUROC (Homework 2 Problem 1)

• Functional differentiation

– Raw moment functional

– Variance functional

– Convolution functional
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12 Efficiency Theory

We develop a general theory to study when asymptotically linear estimators achieve the lowest
possible asymptotic variance. This extends the observation of Charles Stein that estimation
in a large modelM ought to be no easier than estimation in 1-dimensional parametric models.
(Recall (Hájek’s) convolution theorem from Chapter 5 on optimal estimators.)

12.1 Definitions

• The (Fisher) information that parameter θ provides is

J (θ) := Pθ

([
∂

∂θ
log pθ

]2)
This measures the curvature of the log-likelihood surface. Curvier surfaces have more
definition to learn from.

• A generalized Cramér-Rao (GCR) lower bound depends on the information and
pathwise derivatives with respect to sufficiently smooth models indexed by θ and passing
through origin θ = 0.

σ2
0 ≥ sup

h∈H

[ ∂
∂θ

Ψ(Pθ,h)|θ=0]2

JMh
(0)

• Scores h ∈ H(P ) are defined (rigorously) with respect to quadratic mean differentiabil-
ity (Chapter 3). Heuristically, if pθ,h = [1 + θh(x)]p(x) is sufficiently smooth, h is the
derivative of the log density at θ = 0.

• The space L0
2(P ) is the collection of real-valued functions f with Pf = 0 and P (f 2) <∞

and endowed with the covariance inner product 〈f1, f2〉P . This is a Hilbert space.

• A (real) Hilbert space is a vector space equipped with an inner product and complete
(in the Cauchy sense) relative to norm ||h|| := 〈h, h〉1/2. Some other properties are:

– (Cauchy-Schwarz) |〈h1, h2〉|2 ≤ ||h1|| · ||h2||
– 〈h1, h2〉 = 0 implies orthogonality

– Orthogonal complement H⊥0 of subspace H0 is {h ∈ H : 〈h, h0〉 = 0,∀h0 ∈ H0}
– Projection of h ∈ H onto H∗, denoted Π[h|H∗], is the unique element h∗ ∈ H∗ s.t.

||h− h∗|| = min{||h− h|| : h ∈ H∗}

Residual h− h∗ is orthogonal to H∗, i.e. orthogonal to any h∗ ∈ H∗.
– If H0 = H1 ⊕H2, then Π[·|H0] = Π[·|H1] + Π[·|H2]
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– Given any closed subspace H0, H can be expressed as H0 ⊕ H⊥0 . As well, any
h ∈ H can be uniquely decomposed into h0 + h⊥0 .

– If Hf := {cf : c ∈ R} for some f ∈ H, then Π[h|Hf ] = 〈h,f〉
〈f,f〉f for any h ∈ H.

– (Riesz representation) If φ is a bounded linear functional, there exists a unique
element h0 ∈ H s.t. φ(h) = 〈h, h0〉 for each h ∈ H. This representation offers the
existence of a gradient.

• The tangent set of model M at P is the set of (QMD) scores h ∈ L0
2(P ) for some

smooth 1-dim submodel indexed by θ that goes through the origin P at θ = 0.

• Tangent space, denoted TM(P ), is the additive and limit closure of the tangent set.
Note that TM(P ) ⊆ L0

2(P ). Models are defined as nonparametric, semiparametric, and
parametric according to the tangent space.

– Nonparametric: at each P the tangent space TM(P ) = L0
2(P )

– Parametric: if TM(P ) is finite-dimensional at each P ∈M
– Semiparametric: otherwise

• A summary of interest Ψ :M→ R is pathwise differentiable at P ∈ M if there is
a continuous linear map Ψ̇P : L0

2(P )→ R s.t. for every h ∈ TM(P )

Ψ̇P (h) :=
∂

∂θ
Ψ(Pθ,h)

∣∣∣∣
θ=0

For each (regular) 1-dim parametric submodel {Pθ,h : θ ∈ Θ} through P the pathwise
derivative at θ = 0 only depends on the score h.

• An element D(P ) ∈ L0
2(P ) is a gradient of Ψ at P relative toM if for each h ∈ TM(P )

Ψ̇P (h) = 〈D(P ), h〉P

Given some gradient D0(P ), the set of gradients can be represented as

GM(P ) := {D0(P ) + q(P ) : q(P ) ∈ TM(P )⊥)}

The canonical gradient is the unique gradient D∗(P ) that lives in tangent space
TM(P ). To find a gradient:

1. Formulate smooth 1-dim submodel, say pθ,h(x) = [1 + θh(x)]p(x)

2. Compute pathwise derivative using calculus

3. Write pathwise derivative as 〈D(P )h〉P for score h

4. Recenter D(P ) to be mean-zero
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12.2 Results

• Gradients in nested models. If M1 ⊆ M2, then GM2(P ) ⊆ GM1(P ). Pathwise
derivatives are harder (there are less of them) when the model is larger.

• Influence functions are gradients. Suppose ψn is an asymptotically linear estimator
of ψ0 := Ψ(P0) with influence function φP0 . TFAE: (i) Ψ is pathwise differentiable at
P0 and φP0 is a gradient, and (ii) ψn is regular at P0.

• Gradients are influence functions. Under sufficient regularity, for a gradient D(P0),
TFAE: (i) an asymptotically linear estimator of ψ0 exists with influence function D(P0),
and (ii) it is possible to estimate D(P0) consistently. This implies that we can find the
influence function of an asymptotically linear estimator by computing a gradient.

• Canonical gradient is the efficient influence function. A RAL estimator ψn of
ψ0 is efficient if and only if

ψn − ψ0 = Pn(D∗(P0)) + oP (n−1/2)

where D∗(P0) is the canonical gradient. This is established by looking at the GCR
lower bound. We may refer to P0(D∗(P0)2) as the efficient bound.

12.3 Examples

• Simple 1-dim submodels

– pθ,h(x) := [1 + θh(x)]p(x)

– pθ,h(x) := exp(θh(x))p(x)/ch(θ) where ch(θ) is normalizing constant

– pθ,h(x) := expit(2θh(x))p(x)/ch(θ) where ch(θ) is normalizing constant

First approach usually suffices to compute a gradient. Third approach does not require
bounded h.

• Tangent spaces

– Nonparametric modelMµ for all d-variate distributions dominated by measure µ

– For bivariate M :=MZ ⊕MY |Z tangent space decomposes

TM(P ) = TMZ
(P )⊕ TMY |Z (P )

For bivariate independence model, Y independent of Z,

TM(P ) = TMZ
(P )⊕ TMY

(P )

See projections onto this tangent space in Note 5. Projections are verified by
checking orthogonality of residuals.

42



Seth Temple
sdtemple@uw.edu Notes

STAT 580s
2020-2021

– Parametric M := {Pβ : β ∈ B} for some open, convex set B ⊆ Rp.

TM(P ) :=

{
x 7→ u · ∂

∂β
log pβ(x)

∣∣∣∣
β=β0

: u ∈ Rp

}
See projections onto this tangent space in Note 5. Projections are verified by
checking orthogonality of residuals.

– A model with moment condition Pg0 = 0 for some g0

TM(P ) =

{
h ∈ L0

2(P ) :

∫
g0(x)h(x)dP (x) = 0

}
See Homework 4 Problem 1 for more details on estimating ψ0 = Pf0 for some f0.
This is an example in which the moment condition restricts the tangent space.

– A model for some symmetric distribution about some center/origin

TM(Pµ,f ) = T1(Pµ,f )⊕ T2(Pµ,f )

T1(Pµ,f ) := {x 7→ aḟ(x− µ)/f(x− µ) : a ∈ R}
T2(Pµ,f ) := {x 7→ h(x− µ) : h ∈ H(P0,f )}

See Homework 4 Problem 2 for more details on estimating the center µ0. This is a
scenario in which exact knowledge about say f0 does not impact efficiency bound.

• Gradients

– Homework 4 Problem 1(c)

– Homework 4 Problem 2(b)

– General moment Ψ(P ) := Pf0 leads to D(P ) : x 7→ f0(x)− Pf0

– Average density value Ψ(P ) :=
∫

[f(x)]2dx = Pf leads to D(P ) : x 7→ 2[f(x)−Pf ]
after some calculus work

– Conditional mean value Ψ(P ) := E[Y |Z = z0]

D(P0) : (z, y) 7→ I(Z = z0)

P0(Z = z0)
[y −Ψ(P0)]

See Note 6 for detail derivations. There is involved calculus work here.
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Miscellaneous

• Differentiability in higher dimensions. Below are two representations of differen-
tiability at ψ0. The first representation is especially useful for proving delta methods.
For all ε > 0,

lim
ε→0

sup
||h||=1

|f(ψ0 + εh)− f(ψ)− ε〈h,∇f(ψ0)〉|
ε

→ 0;

lim
h→0

||f(ψ0 + h)− f(ψ)− Jf (h)||
||h||

→ 0.

Read more about the second representation at the Wikipedia article for differentiable
functions in higher dimensions. A sufficient condition for differentiability is that partial
derivatives exist and the linear map Jf is the Jacobian matrix. In class, we claim
this sufficient condition as that f is partially differentiable in a neighborhood around
ψ0 and the partial derivatives are continuous at ψ0. Lastly, note that h in the two
representations are different!

• Find a Lipschitz constant by finding the maximum of the norm of the gradient.

• Mean value theorem. For a function continuous on [a, b] and differentiable on (a, b)
there is some c in the open interval such that the tangent line f ′(c) equals the secant
line connecting a and b.

• Extreme value theorem. A continuous function on a closed interval attains its
maximum and minimum values. With this result, we may assert that an extremum is
at least attained.

• Fundamental theorems of calculus. These results link derivatives with integrals.

f(b)− f(a) =

∫ b

a

f ′(x) dx

f(x) =

∫ x

a

f(t) dt =⇒ f ′(x) = f(x)

• Taylor series. We approximate differentiable functions by the following and the re-
mainder vanishes in the asymptote.

f(x) =
f (0)(a)

0!
(x− a)0 +

f (1)(a)

1!
(x− a)1 +

f (2)(a)

2!
(x− a)2 + remainder

• Lagrange remainder. Combining Taylor series with the mean value theorem we
arrive at an alternative representation for `-differentiable functions.

f(x) =
f (0)(a)

0!
(x− a)0 +

f (1)(a)

1!
(x− a)1 + · · ·+ f (`−1)(a)

(`− 1)!
(x− a)`−1 +

f (`)(x̃a)

`!
(x̃a)

`

Here x̃a is some point in the interval between x and a. Final term is Lagrange remainder.
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• Properties of convex functions.

– f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) for t ∈ [0, 1].

– With differentiability added, the function is continuously differentiable.

– Differentiable on an [a, b] implies the derivative is nondecreasing on [a, b].

– Differentiable on [a, b] implies

f(x) ≥ f(y) + f ′(y)(x− y) x, y ∈ [a, b]

• Convex hull. conv(F) := ∪∞k=1{x 7→
∑k

j=1 αjfj(x) : minj αj ≥ 0,
∑k

j=1 αj = 1}

• Use this equality inf(−xn) = − supxn to redefine the Xn = OP (Rn) notation.

• 1 + x ≤ ex is a useful upper bound inequality to convert to an exponential argument.

• log(1 + x) ≤ x for x ≥ 0 is a useful upper bound inequality to convert to.

• (ex − x− 1)/x2 is a nondecreasing function.

• Some useful Taylor series

– ex = 1 + x1

1!
+ x2

2!
+ x3

3!
+ . . .

– log(1 + x) = 0 + x1

1!
− x2

2!
+ x3

3!
− x4

4!
± . . .

– 1
1−x = 1 + x1 + x2 + x3 + . . .

• Reverse triangle inequality.∣∣∣||x||2 − ||y||2∣∣∣ ≤ ||x− y||2
• We say that X is stochastically larger than Y if P (X ≤ x) ≤ P (Y ≤ x).

• See this for functions of bounded variation and how to (Jordan) decompose such.

• For concave functions, the inequality sign in Jensen’s switches.

• (y − a)2 − (y − b)2 = (a− b)(a+ b− 2y) we use studying Reg(θ̂) for squared loss.

• Symbol � refers to order of magnitude.

• Symbol . refers to ≤ up to constants.

• Tight bound Θ(·) is explained here.

• vol(Bd(0, ε)) ≤ (ε/r)dvol(Bd(0, r))
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• Bolzano-Weierstrass. Every bounded sequence has a convergent subsequence.

• Semi-continuity. See graphs under Examples.

– A function f is lower-semicontinuous at x0 if for all ε > 0 there is a neighborhood
around x0 such that f(x) ≥ f(x0)− ε

– A function f is upper-semicontinuous at x0 if for all ε > 0 there is a neighborhood
around x0 such that f(x) ≤ f(x0) + ε.

• Fisher-Cramér. This result from MDP’s STAT 513 says that the MLE is asymptot-
ically consistant and normal if we have a regularity condition the depends of first and
second derivatives of the log likelihood. Important estimators like medians may not fit
into this framework. We weaken this assumption using QMD.

• Binomial theorem.

(x+ y)n =
n∑
k=0

(
n

k

)
xkyn−k
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