These notes are from courses taught by University of Washington Professors Alex Luedtke and Marco Carone, as well as based on van der Vaart's Asymptotic Statistics and Wainwright's High-Dimensional Statistics. Another textbook Weak Convergence and Empirical Processes by van der Vaart and Wellner is used. This book may be abbreviated vdV\&W (1996) whereas the blue book may be abbreviated vdV (2000). My contribution is to reword and reorganize course content and to provide some supplementary material. Enjoy the cover page matter and the rest!

1 Decision Theory

We introduce four criteria to measure the performance of decision rules: Bayes risk, minimaxity, Γ-minimaxity, and admissibility.

1.1 Definitions

- An action a from an action space \mathcal{A} is the realization of a probability distribution conditional on data.
- A decision rule $D(\cdot \mid X=x)$ is a probability distribution conditional on data. We commonly use deterministic decision rules, i.e. the probability distribution is degenerate.
- A loss function $L: \mathcal{A} \times \Theta \rightarrow \mathbb{R}$ measures the quality of an action $a \in \mathcal{A}$ when $\theta \in \Theta$.
- Risk is a function that measures the quality of a decision rule given $\theta \in \Theta$.

$$
\mathcal{R}(D, \theta)=\int_{\mathcal{X}} \int_{\mathcal{A}} L(a, \theta) D(d a \mid x) d P_{\theta}(x) .
$$

- A (decision) rule is inadmissible if there is another decision rule that has risk less than or equal to it everywhere and risk strictly less than it somewhere. A decision rule is admissible if it is not inadmissible.
- A rule is minimax if its worst case risk is the infimum of the worst case risks of various rules. That is,

$$
\sup _{\theta \in \Theta} \mathcal{R}\left(D^{\star}, \theta\right)=\inf _{D \in \mathcal{D}} \sup _{\theta \in \Theta} \mathcal{R}(D, \theta)
$$

- The Bayes risk with respect to prior Π is the expectation of a rule's risk. That is,

$$
r(D, \Pi)=\int_{\Theta} \mathcal{R}(D, \theta) d \Pi(\theta)
$$

- A rule is a Bayes rule with respect to a prior Π if it achieves the smallest Bayes risk. That is,

$$
r\left(D^{\star}, \Pi\right)=\inf _{D \in \mathcal{D}} r(D, \Pi)
$$

- A rule is unique Bayes for a prior if any other Bayes rule equals it except on null sets for all P_{θ}. A rule is unique minimax if any other minimax rule equals it except on null sets for all P_{θ}.
- An estimator D^{\star} is Γ-minimax w.r.t. a loss function if

$$
\sup _{\Pi \in \Gamma} r\left(D^{\star}, \Pi\right)=\inf _{T} \sup _{\Pi \in \Gamma} r(T, \Pi) .
$$

This definition is analogous to minimax but w.r.t. Bayes risk as opposed to risk.

- The kernel of a posterior distribution is the function depending on the parameter, not the proportionality constant. The kernel uniquely determines the posterior distribution.
- A conjugate prior is one such that the posterior distribution is in the same family as the prior distribution.
- A prior is least favorable if the Bayes risk for the Bayes rule and the prior achieves the supremum over priors of Bayes risks for paired Bayes rules and priors.
- A sequence of priors is least favorable if, for all priors Π,

$$
r\left(D_{\Pi}, \Pi\right) \leq \liminf _{k \rightarrow \infty} r\left(D_{\Pi_{k}}, \Pi_{k}\right) .
$$

1.2 Results

- Finding Bayes rules by minimizing the conditional expected loss. Suppose that $\boldsymbol{\theta} \sim \Pi, X \mid \boldsymbol{\theta}=\theta \sim P_{\theta}$, and the loss is nonnegative. If,
(i) there is a rule with finite Bayes risk, and
(ii) there exists $D_{\Pi} \in \mathcal{D}$ for almost all x that minimizes the conditional expected loss, then D_{Π} is a Bayes rule.
- If the loss function is convex for fixed θ, decision rules are unrestricted, the action space is convex, and there is a Bayes rule, then there is a deterministic Bayes rule.
- Constant risk theorem. If Π satisfies

$$
r\left(D_{\Pi}, \Pi\right)=\sup _{\theta \in \Theta} \mathcal{R}\left(D_{\Pi}, \theta\right)
$$

then (i) D_{Π} is minimax, (ii) unique Bayes D_{Π} w.r.t. Π implies unique minimax, and (iii) Π is a least favorable prior.

- Constant risk theorem (ii). For a sequence of priors $\left\{\Pi_{k}\right\}$, if $D \in \mathcal{D}$ satisfies

$$
\sup _{\theta \in \Theta} \mathcal{R}(D, \theta)=\liminf _{k \rightarrow \infty} r\left(D_{\Pi_{k}}, \Pi_{k}\right),
$$

then (i) D is minimax, and (ii) $\left\{\Pi_{k}\right\}$ is a least favorable prior sequence.

- Constant Bayes risk theorem. If $\Pi^{\star} \in \Gamma$ satisfies

$$
r\left(D_{\Pi_{\star}}, \Pi_{\star}\right)=\sup _{\Pi \in \Gamma} r\left(D_{\Pi^{\star}}, \Pi\right)
$$

then (i) $D_{\Pi_{\star}}$ is Γ-minimax, (ii) unique Bayes $D_{\Pi^{\star}}$ implies unique minimax, and (iii) Π^{\star} is a least favorable prior.

- If a minimax estimator for a smaller model has no worse worst-case risk scenario for a large model, then the estimator is minimax for the larger model as well. (See slide 36.)
- Some admissible estimators. (i) Any unique Bayes rule is admissible, and (ii) any unique minimax rule is admissible. Moreover, for squared error loss, finite $r\left(D_{\Pi}, \Pi\right)$, and $\int P_{\theta}(X \in A) d \Pi(\theta)=0$ implying $P_{\theta}(X \in A)=0$ for all θ, we have that D_{Π} is a unique Bayes rule.
- Stein's lemma. Let $Y \sim N\left(\mu, \sigma^{2}\right)$ and let $g: \mathbb{R} \rightarrow \mathbb{R}$ be such that $\mathbb{E}\left[\left|g^{\prime}(Y)\right|\right]<\infty$. Then, $\mathbb{E}[g(Y)(Y-\mu)]=\sigma^{2} \mathbb{E}\left[g^{\prime}(Y)\right]$. (See slides 74-76 for multivariate generalization.)

1.3 Examples

- The posterior mean is the (deterministic) Bayes rule under L_{2} loss.
- The posterior median is the (deterministic) Bayes rule under L_{1} loss.
- The posterior mode is the (deterministic) Bayes rule under 0-1 loss.
- The sample mean is a minimax estimator for θ in an $X \equiv\left(X_{1}, \cdots, X_{n}\right)$ iid sample of $N\left(\theta, \sigma^{2}\right)$ random variables.
- The sample mean is an admissible estimator for θ in the case of univariate normals with mean θ. The sample mean is inadmissible for dimension three or higher.
- The James-Stein estimator beats the sample mean when estimating a mean vector of dimension 3 or more. The positive-part James-Stein estimator beats the James-Stein estimator, so the James-Stein estimator is inadmissible too. Intuitively, the James-Stein estimator shrinks the sample mean towards zero (or some other point).

$$
T^{J S}(x)= \begin{cases}\left(1-\frac{(d-2) \sigma^{2}}{n\left\|\bar{x}_{n}\right\|^{2}} \bar{x}_{n}\right. & \bar{x}_{n} \neq(0, \cdots, 0) \\ 0 & \text { otherwise }\end{cases}
$$

In some cases, we can reduce the James-Stein estimator to lower dimensions by leveraging the fact that it is a spherically symmetric estimator, where a spherically symmetric estimator is of the form $T_{\tau}(x)=\tau(\|x\|) x$. This fact solicits some geometric intuition (see slides 63-72). The shrinkage property creates bias and may be inappropriate for estimating individual means. Finally, we can motivate these estimators from an empirical Bayes perspective.

2 Large Sample Theory

These results facilitate statistical inference when samples sizes grow to infinity.

2.1 Definitions

- (convergence almost surely) $A_{n} \rightarrow_{\text {a.s. }} A$ if $P\left(\lim _{n \rightarrow \infty}\left\|A_{n}-A\right\|=0\right)=1$.
- (convergence in probability) $A_{n} \rightarrow_{p} A$ if, for all $\varepsilon>0, P\left(\left\|A_{n}-A\right\|>\varepsilon\right) \rightarrow 0$.
- \mathbb{R}^{d}-valued random variable A_{n} converges in distribution to A if, for all bounded, continuous functions $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$,

$$
\mathbb{E}\left[f\left(A_{n}\right)\right] \rightarrow \mathbb{E}[f(A)]
$$

This convergence is sometimes referred to as weak convergence or convergence in law.

- Uniform integrability: $\left\{X_{n}\right\}$ is u.i. if $\sup _{n} \mathbb{E}\left[\left|X_{n}\right| \cdot 1\left\{\left|X_{n}\right| \geq a\right\}\right] \rightarrow 0$. This is a condition controlling tail probabilities. (Weak convergence and u.i. imply convergence of means.)

- Order notations.

$-x_{n}=O\left(r_{n}\right)$ if limsup $\left|x_{n} / r_{n}\right|<\infty$. Equivalently, there exists $M>0$ such that $I\left\{\left|x_{n}\right| \leq M\left|r_{n}\right|\right\} \rightarrow 1$. In layman's terms, x_{n} is within some multiplicative constant of r_{n}.
$-x_{n}=o\left(r_{n}\right)$ if $\lim \sup \left|x_{n} / r_{n}\right|=0$. Identically, for all $M>0, I\left\{\left|x_{n}\right| \leq M\left|r_{n}\right|\right\} \rightarrow 1$. In layman's terms, x_{n} changes slower than r_{n}.

- $X_{n}=O_{P}\left(R_{n}\right)$ if, for all $\varepsilon>0$, there exists $M>0$ s.t.

$$
\liminf P\left(\left\|X_{n}\right\| \leq M\left\|R_{n}\right\|\right)>1-\varepsilon .
$$

$-X_{n}=o_{P}\left(R_{n}\right)$ if, for all $M>0$,

$$
P\left(\left\|X_{n}\right\| \leq M\left\|R_{n}\right\|\right) \rightarrow 1 .
$$

- Stochastic and determisitic notations are equivalent when $X_{n} \stackrel{\text { a.s. }}{=} x_{n}$ and $R_{n} \stackrel{\text { a.s. }}{=} r_{n}$.
$-X_{n}=o_{P}(1)$ if and only if $X_{n} \rightarrow_{p} 0$.
- $X_{n}=O_{P}(1)$ is also referred to as the random sequence being uniformly tight.
- $o_{P}(1)$ is related to convergence in probability whereas $O_{P}(1)$ is related to weak convergence.
- Read these useful properties left to right as an implication:
(1) $X_{n}=o_{P}\left(R_{n}\right)$ if and only if $X_{n}=R_{n} Y_{n}$ for some $Y_{n}=o_{P}(1)$;
(2) $X_{n}=O_{P}\left(R_{n}\right)$ if and only if $X_{n}=R_{n} Y_{n}$ for some $Y_{n}=O_{P}(1)$;
(3) $o_{P}(1)+o_{P}(1)=o_{P}(1)$;
(4) $o_{P}(1)+O_{P}(1)=O_{P}(1)$;
(5) $O_{P}(1) O_{P}(1)=O_{P}(1)$;
(6) $o_{P}(1) O_{P}(1)=o_{P}(1)$;
(7) $\left[1+o_{P}(1)\right]^{-1}=O_{P}(1)$;
(8) $X_{n}=o_{P}(1)$ implies $X_{n}=O_{P}(1)$.

2.2 Results

- Almost sure convergence implies convergence in probability implies weak convergence.
- Let $\left\{A_{n}\right\}, A$, and B be defined on a common probability space. $A_{n} \rightarrow_{a . s .} A$ and $A_{n} \rightarrow_{\text {a.s. }} B$ implies $A=B$ almost surely. $A_{n} \rightarrow_{p} A$ and $A_{n} \rightarrow_{p} B$ implies $A=B$ almost surely. Similarly, if $X_{n} \rightarrow_{d} X$ and $X_{n} \rightarrow_{d} \tilde{X}$, then $X \stackrel{d}{=} \tilde{X}$. This juxtaposition highlights that the weak limit X is only unique up to its distribution, whereas the other convergence limits are unique.
- Portmanteau theorem. TFAE definitions for weak convergence \Rightarrow. Some of these interpretations of weak convergence are more useful than others in proving certain results. Search this list for the appropriate definition for any proof at hand.
(i) $\mathbb{E}\left[f\left(X_{n}\right)\right] \rightarrow \mathbb{E}[f(X)]$ for all bounded, continuous f.
(ii) $P\left(X_{n} \leq x\right) \rightarrow P(X \leq x)$ for all continuity points x of $P(X \leq \cdot)$.
(iii) $\mathbb{E}\left[f\left(X_{n}\right)\right] \rightarrow \mathbb{E}[f(X)]$ for all bounded, Lipschitz-continuous f.
(iv) $\lim \sup \mathbb{E}\left[f\left(X_{n}\right)\right] \leq \mathbb{E}[f(A)]$ for every upper semicontinuous f bounded above.
(v) $\lim \inf \mathbb{E}\left[f\left(X_{n}\right)\right] \geq \mathbb{E}[f(X)]$ for every lower semicontinuous f bounded below.
(vi) $\lim \sup P\left(X_{n} \in F\right) \leq P(X \in F)$ for all closed sets F.
(vii) $\lim \inf P\left(X_{n} \in O\right) \geq P(X \in O)$ for all open sets O.
(viii) $P\left(X_{n} \in C\right) \rightarrow P(X \in C)$ for all continuity sets C, i.e. sets C s.t. $P(X \in \partial C)=0$.
(ix) $\mathbb{E}\left[\exp \left\{i t^{T} X_{n}\right\}\right] \rightarrow \mathbb{E}\left[\exp \left\{i t^{T} X\right\}\right]$ for all vectors t. (Lévy continuity)
(x) $t^{T} X_{n} \Rightarrow t^{T} X$ for all vectors t. (Cramér-Wold)
- Continuous mapping. Let f be continuous at every point of C s.t. $P(X \in C)=1$.
(i) $X_{n} \Rightarrow X$ implies $g\left(X_{n}\right) \Rightarrow g(X)$;
(ii) $X_{n} \rightarrow_{p} X$ implies $g\left(X_{n}\right) \rightarrow_{p} g(X)$;
(iii) $X_{n} \rightarrow_{\text {a.s }} X$ implies $g\left(X_{n}\right) \rightarrow_{\text {a.s }} g(X)$.

- Slutsky-like lemmas.

(i) $X_{n} \Rightarrow X$ and $\left\|X_{n}-Y_{n}\right\| \rightarrow_{p} 0$ implies $Y_{n} \Rightarrow X$;
(ii) $X_{n} \Rightarrow X$ and $Y_{n} \rightarrow_{p} c$ for constant c implies $\left(X_{n}, Y_{n}\right) \Rightarrow(X, c)$.

- Slutsky's lemma. This result provides a way to combine random vectors and random variables in the asymptote. Be careful with random vectors versus random variables in between (i) versus (ii) and (iii).
(i) $X_{n} \Rightarrow X$ and $Y_{n} \rightarrow_{p} c$ for multidimensional constant c implies $X_{n}+Y_{n} \Rightarrow X+c$;
(ii) $X_{n} \Rightarrow X$ and $Y_{n} \rightarrow_{p} c$ for 1-dim constant c implies $X_{n} Y_{n} \Rightarrow c X$;
(iii) $X_{n} \Rightarrow X$ and $Y_{n} \rightarrow_{p} c$ for nonzero 1-dim constant c implies $X_{n}+Y_{n} \Rightarrow X / c$.
- Laws of large numbers. Let $\mathbb{E}[|X|]<\infty$. Then,
- (weak law of large numbers) $\bar{X}_{n} \rightarrow_{p} \mathbb{E}[X]$;
- (strong law of large numbers) $\bar{X}_{n} \rightarrow_{a . s} \mathbb{E}[X]$.
- Prokhorov theorem. This theorem relates to how $o_{P}(1)$ is linked with converge in probability. Here we see a relationship between $O_{P}(1)$ and weak convergence. The result is not quite an if and only if result. (ii) is similar to the Bolzano-Weierstrass theorem from real analysis.
(i) $X_{n} \Rightarrow X$ for some X implies that $X=O_{P}(1)$.
(ii) $X_{n}=O_{P}(1)$ implies that there is a subsequence $\left\{X_{n_{i}}\right\}$ s.t. $X_{n_{i}} \Rightarrow X$ for some X.

- Central limit theorems.

- (vanilla univariate CLT) iid sample and finite second moment implies

$$
\sqrt{n}\left(\bar{X}_{n}-\mu\right) \Rightarrow N\left(0, \sigma^{2}\right) ;
$$

- (vanilla multivariate CLT) iid sample and finite expected norm squared implies

$$
\sqrt{n}\left(\bar{X}_{n}-\mu\right) \Rightarrow N_{d}\left(0, \sigma^{2} \cdot \mathrm{Id}_{d}\right) .
$$

- (Lindeberg-Feller) The setup is triangular array $\left\{X_{n i}\right\}_{i=1}^{n}$ with independent rows, $\mathbb{E}\left[X_{n i}\right]=\mu_{n i}$, finite $\operatorname{Var}\left(X_{n i}\right)=\sigma_{n i}^{2}, \sigma_{n}^{2}=\sum_{i=1}^{n} \sigma_{n i}^{2}>0$, and $Y_{n i}=\left(X_{n i}-\mu_{n i}\right) / \sigma_{n}^{2}$. Then, the Lindeberg condition implies $\sum_{i=1}^{n} Y_{n i} \Rightarrow N(0,1)$.
- (Lindeberg) For all $\varepsilon>0, \sum_{i=1}^{n} \mathbb{E}\left[Y_{n i}^{2} \cdot I\left\{\left|Y_{n i}\right| \geq \varepsilon\right\}\right] \rightarrow 0$ as n gets large.
- (Lyapunov) For some $\delta>0, \sum_{i=1}^{n} \mathbb{E}\left[Y_{n i}^{2+\delta}\right] \rightarrow 0$ as n gets large. The Lyapunov condition implies the Lindeberg conditon.

- Delta methods.

- (univariate) If $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is differentiable at ψ_{0} and $r_{n}\left(\psi_{n}-\psi_{0}\right) \Rightarrow Z$, then

$$
r_{n}\left(f\left(\psi_{n}\right)-f\left(\psi_{0}\right)\right) \Rightarrow\left\langle Z, \nabla f\left(\psi_{0}\right)\right\rangle ;
$$

- (multivariate) if $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{p}$ is differentiable at ψ_{0} and $r_{n}\left(\psi_{n}-\psi_{0}\right) \Rightarrow Z$, then

$$
r_{n}\left(f\left(\psi_{n}\right)-f\left(\psi_{0}\right)\right) \Rightarrow J_{f} Z
$$

where J_{f} is the Jacobian with respect to function f.

2.3 Examples

- Examples
- The vanilla univariate central limit theorem is a special case of the Lindeberg-Feller central limit theorem when we have iid samples.
- See slides 40-44 applying Lindeberg-Feller for simple linear regression with a fixed design. This example is also discussed in Amy Willis's BIOST 533. Moreover, we can find another Lindeberg-Feller example on the BIOST 533 final exam.
- Samples from standard multivariate normals have nice weak convergence results. See Homework 2. The crux is to decompose the random vector into polar coordinates and consider generic orthogonal transformations.
- Estimation of relative risk using a delta method. See end of Chapter 2 slides.
- Counterexamples
- Convergence in probability does not imply almost sure convergence. We consider a sequence of indicators that splits $[0,1]$ into halves, then thirds, then fourths, and so on. As n gets large, this sequence of random variables converges in probability to zero. However, the indicator is triggered infinitely often, so the sequence does not converge almost surely to zero.
- Convergence in distribution does not imply convergence in probability. We consider a sequence that converges weakly to a symmetric distribution.
- Dependent sequences that marginally converge weakly may not jointly converge weakly. We consider sequences where the covariance between random variables alternate between -1 and 1 . With independence, marginal weak convergences imply joint weak convergence.

3 M-, Z- Estimation

We introduce two paradigms for deriving estimators for a parameter $\theta . M$ for "maximum" in M-estimation involves maximizing a criterion function. Z for "zero" in Z-estimation involves finding roots of a criterion function.

3.1 Definitions

- Empirical process notation provides shorthand

$$
\begin{gathered}
P f \equiv \int f(x) d P(x) \\
P_{n} f \equiv \frac{1}{n} \sum_{i}^{n} f\left(X_{i}\right)
\end{gathered}
$$

- If $\phi_{0} \equiv \phi\left(\theta_{0}\right) \in \arg \max _{\phi} P_{0} m_{\phi}$, then $\phi_{n} \in \arg \max _{\phi} P_{n} m_{\phi}$ is an M-estimator. More generally, we consider M_{0} and M_{n} that do not have to be $P_{0} m_{\phi}$ and $P_{n} m_{\phi}$.
- If ϕ_{0} is a solution to $P_{0} z_{\phi}=\underline{0}$, then the solution ϕ_{n} to $P_{n} z_{\phi}=\underline{0}$ is a Z-estimator. More generally, we consider Z_{0} and Z_{n} that do not have to be $P_{0} z_{\phi}$ and $P_{n} z_{\phi}$.
- We call $\left\{m_{\phi}: \phi \in S \supset \operatorname{Im}(\Phi)\right\}$ a P_{0}-GC class if $\sup _{\phi}\left|\left(P_{n}-P_{0}\right) m_{\phi}\right|=o_{P}(1)$
- The bracketing number measures how complex the class of functions \mathcal{F} is. See slides 21-26 for an introduction with application in the Glivenko-Cantelli theorem.
- The root density $\theta \mapsto \sqrt{p_{\theta}}$ is differentiable in quadratic mean at θ if there exists a pseudoscore function $\dot{\ell}_{\theta}$ such that

$$
\sup _{\|h\|=1} \int\left(\frac{\sqrt{p_{\theta+\varepsilon h}}-\sqrt{p_{\theta}}}{\varepsilon}-\frac{h^{T} \dot{\ell}_{\theta}}{2} \sqrt{p_{\theta}}\right)^{2} d \mu \xrightarrow{\varepsilon \rightarrow 0} 0
$$

This definition is akin to differentiability except an integral is thrown into the mix. It is exactly what we require to weaken the regularity condition of first and second order differentiability for asymptotic normality. We say a model is QMD if its root density is QMD. The pseudoscore is the score under reasonable conditions.

- The squared Hellinger distance is involved in QMD arguments.

$$
H^{2}\left(P_{\epsilon}, P_{0}\right) \equiv \int\left(\sqrt{p_{\epsilon}}-\sqrt{p_{0}}\right)^{2} d \mu
$$

- $\mathcal{L}^{2}(\mu)$ contains μ-measurable functions f such that $\int f^{2} d \mu$ is finite. This space is equipped with inner product and norm, so the triangle and reverse triangle inequalities hold.

3.2 Results

- Under conditions for Radon-Nikodym derivatives, the Kullback-Leibler divergence serves as an m_{ϕ} justifying maximum likelihood estimators as M-estimators.
- Under certain conditions, the M-estimation problem (maximizing) can be expressed as a Z-estimation problem (root-finding). On the other hand, $M_{\theta}(\phi)=-\left\|Z_{\theta}(\phi)\right\|$ expresses a Z-estimation problem as an M-estimation problem.
- Uniform consistency. Suppose that
(i) a near-maximizer for M_{n} is available: ϕ_{n} satisfies $M_{n}\left(\phi_{n}\right) \geq \sup _{\phi} M_{n}(\phi)-o_{P}(1)$;
(ii) M_{n} is uniformly consistent: $\sup _{\phi}\left|M_{n}(\phi)-M_{0}(\phi)\right| \rightarrow_{p} 0$; and
(iii) ϕ_{0} is well-separated: $\forall \varepsilon>0, M_{0}\left(\phi_{0}\right)>\sup _{\left\|\phi-\phi_{0}\right\|>\varepsilon} M_{0}(\phi)$.

Then, $\phi_{n} \rightarrow_{p} \phi_{0}$.
Finding a maximum is a good way to satisfy (i). In Homework 4 Problem 1(a), we formulate a case where missing condition (iii) results in the conclusion not holding.

- Consistency of Z-estimators in one dimension. Let $\operatorname{Im}(\Phi) \subset \mathbb{R}$ and, for all ϕ, $Z_{n}(\phi) \rightarrow_{p} Z_{0}(\phi)$. One or the other or both must hold:
(i) $\phi \mapsto Z_{n}(\phi)$ is continuous and has one root ϕ_{n}.
(ii) $\phi \mapsto Z_{n}(\phi)$ is nondecreasing and there is ϕ_{n} such that $Z_{n}\left(\phi_{n}\right)=o_{P}(1)$.
ϕ_{0} such that, for all $\varepsilon>0, Z_{0}\left(\phi_{0}-\varepsilon\right)<0<Z_{0}\left(\phi_{0}+\varepsilon\right)$ implies $\phi_{n} \rightarrow_{p} \phi_{0}$.
This result is analogous to Homework 4 Problem 4(b).

- Glivenko-Cantelli theorems.

(i) If \mathcal{F} is a class of functions with finite bracketing number for all $\varepsilon>0, \mathcal{F}$ is P_{0}-GC:

$$
\left\|P_{n}-P_{0}\right\|_{\mathcal{F}} \equiv \sup _{f}\left|\left(P_{n}-P_{0}\right) f\right|=o_{P}(1) .
$$

(ii) Suppose $\mathcal{F} \equiv\left\{f_{\phi}: \phi \in K\right\}$ for $K \subset \mathbb{R}^{d}$ compact. If $\phi(x) \mapsto f_{\phi}(x)$ is continuous for all x and there is an envelope function F satisfying $P_{0} F<\infty$ for which $\sup _{\phi}\left|f_{\phi}(x)\right| \leq F(x)$ for all x, then the bracketing number is finite for $\varepsilon>0$.

- Under regularity conditions, we have asymptotic normality for Z - and M-estimators. Regularity conditions are assumptions required such that we achieve our desired result. See Chapter 3 slides 29-36 and van der Vaart Theorems 5.21 and 5.23 . Below we write some of these regularity conditions for Z-estimation.
(i) ϕ is an open subset of \mathbb{R}^{d};
(ii) $\mathbb{E}_{0}\left\|z_{\phi_{0}}(X)\right\|^{2}<\infty$;
(iii) $\phi \mapsto P_{z_{\phi}}$ differentiable at zero ϕ_{0} with nonsingular Jacobian matrix $V_{\phi_{0}}$;
(iv) There exists function G satisfying $P_{0} G^{2}<\infty$ so that, for all x and every ϕ and $\tilde{\phi}$ in some neighborhood of $\phi_{0},\left\|z_{\phi}(x)-z_{\tilde{\phi}}(x)\right\| \leq\|\phi-\tilde{\phi}\| G(x)$;
(v) There exists ϕ_{n} satisfying $P_{n} z_{\phi_{n}}=o_{P}\left(n^{-1 / 2}\right)$ and $\phi_{n}=\phi_{0}+o_{P}(1)$
- Sufficient conditions for QMD. For every θ in an open subset of \mathbb{R}^{d}, if
(i) The root density is continuously differentiable for every x
(ii) The information (matrix) is well-defined and continuous in θ
then the root density is QMD and the pseudoscore is the score.
- QMD implies that the score is mean zero and that the information (matrix) exists.
- Asymptotic normality of MLEs under QMD. We list the regularities required.
(i) The model is QMD at an inner point θ_{0} in Θ
(ii) There is a measurable function G with $P_{0} G^{2}<\infty$ such that for every θ_{1} and θ_{2} in a neighborhood of θ_{0}

$$
\left|\ell_{\theta_{1}}(x)-\ell_{\theta_{2}}(x)\right| \leq G(x)| | \theta_{1}-\theta_{2}| |
$$

(iii) $I_{\theta_{0}}$ is nonsingular
(iv) MLE is consistent

Then,

$$
\sqrt{n}\left(\hat{\theta}-\theta_{0}\right)=I_{\theta_{0}}^{-1} \frac{1}{\sqrt{n}} \sum \dot{\ell}_{\theta_{0}}\left(X_{i}\right)+o_{P}(1) \Rightarrow N\left(0, I_{\theta_{0}}^{-1}\right)
$$

3.3 Examples

- Method of moments estimators are Z-estimators.
- The sample median ϕ_{n} satisfies $(1 / n) \sum_{i} \operatorname{sign}\left(X_{i}-\phi\right)=0$ in one dimension.
- Location-scale families are QMD under assumptions. See Homework 4 Problem 2.
- See Homework 4 Problem 3 for some general QMD models.

4 Hypothesis Testing

First, we compare the Wald, score (Rao), and likelihood ratio tests that all converge in distribution to χ^{2} under regularity conditions. Second, we consider local alternatives where in sampling from the alternative we maintain desirable properties for our estimators. See Chapter 4 slides for the hypothesis testing framework.

4.1 Definitions

- The (randomized) test function $\phi_{n}(X)$ indicates when we reject the null.
- The power function $\pi_{n}(\theta)=\mathbb{E}_{\theta}\left[\phi_{n}(X)\right]$ measures the probability we reject the null.
- The size of the test is $\sup _{\theta_{0} \in \Theta_{0}} \pi_{n}\left(\theta_{0}\right)$.
- Q is absolutely continuous w.r.t. P means that $P(A)=0$ implies $Q(A)=0$.
- Q_{n} is contiguous w.r.t P_{n} means that $P_{n}\left(A_{n}\right) \rightarrow 0$ implies $Q_{n}\left(A_{n}\right) \rightarrow 0$.
- A local alternative is some $\theta+h / \sqrt{n}$ where h describes some (small) perturbation from the null in an arbitrary direction.
- A regular estimator is an estimator whose sampling distribution is invariant to local perturbations of the data-generating distribution.

4.2 Results

- Wald test. This test rejects the null when the estimate $\hat{\psi}$ of ψ is far from zero. The test statistic $W_{n} \equiv n \hat{\psi}^{T} A_{\hat{\theta}} \hat{\psi} \Rightarrow \chi^{2}(m)$ under the null where m is the dimension of the space ψ lives in. This test can be easy to implement when considering many hypotheses because the we only find one MLE.
- Likelihood ratio test. This test rejects the null when the KL divergence is large. The test statistic $L_{n} \equiv 2 n P_{n}\left[\ell_{\hat{\theta}}-\ell_{\hat{\theta_{0}}}\right] \Rightarrow \chi^{2}(m)$. This test better controls the type 1 error in small samples.
- Score test. This test rejects the null when the empirical mean of the score is far from zero. The test statistic $S_{n} \equiv Z_{n}\left(\hat{\theta}_{0}\right) I_{\hat{\theta}_{0}}^{-1} Z_{n}\left(\hat{\theta}_{0}\right) \Rightarrow \chi^{2}(m)$. This test is easy to implement because Θ_{0} is often a lower-dimensional space.
- The pairwise differences between these three tests converge in probability to zero under the null hypothesis.
- Le Cam's First Lemma. This lemma helps us to show and characterize contiguity. TFAE:
(i) Q_{n} is contiguous w.r.t. P_{n}
(ii) $L_{n} \equiv \frac{d Q_{n}^{a}}{d P_{n}}\left(Z_{n}\right) \stackrel{P_{n}}{\Rightarrow} V$ along a subsequence implies that $\mathbb{E}[V]=1$.
(iii) $\frac{d P_{n}^{a}}{d Q_{n}}\left(Z_{n}\right) \stackrel{Q_{n}}{\Rightarrow} U$ along a subsequence implies that $P(U>0)=1$.
- Le Cam's Third Lemma. This lemma shows us how to use contiguity when studying alternatives. Suppose that Q_{n} is contiguous w.r.t. P_{n} and $\left(T_{n}, L_{n}\right) \xlongequal{P_{n}}(T, V)$. For all measurable $A \subset \mathbb{R}^{d}$, let $R(A)=\mathbb{E}\left[I_{A}(T) V\right]$. Then R is a probability measure and $T_{n} \xlongequal{Q_{n}} R$.
- Asymptotic normality of \log likelihood ratio. Suppose $\log L_{n} \stackrel{P_{n}}{\Rightarrow} N\left(\mu, \sigma^{2}\right)$. Then Q_{n} is contiguous w.r.t. P_{n} if and only if $\mu=-\sigma^{2} / 2$. This result emphasizes that it can sometimes be useful to consider the weak limit of the log likelihood ratio.
- See van der Vaart Theorem 7.2 and Chapter 4 slides 30-40. With this theorem and Le Cam's Third Lemma, we derive results for Wald tests under local alternatives and regular estimators.
- We achieve perfect asymptotic power at fixed alternatives. That is, if we collect enough data, we will always reject a false null hypothesis.
- Wald statistic under local alternative. We assume the regularity conditions for the asymptotic normality of the MLE. Then, the Wald statistic W_{n} has a noncentral $\chi^{2}(m)$ weak limit where the noncentrality parameter is $h_{\psi}^{T} A_{\theta} h_{\psi}$. Because χ^{2} random variables are stochastically increasing in their noncentrality parameter, the Wald test achieves non-trivial power at local alternatives.
- We skipped the section on relative efficiency. See the final Chapter 4 slides.

5 Optimality

We study when the MLE is an optimal estimator.

5.1 Results

- Pointwise asymptotic optimality. Suppose there is an estimator θ_{n} for each θ such that $\sqrt{n}\left(\theta_{n}-\theta\right) \stackrel{\theta}{\Rightarrow} Q_{\theta}$. For any θ there exists another estimator $\tilde{\theta}_{n}$ such that

$$
\sqrt{n}\left(\tilde{\theta}_{n}-\theta^{\prime}\right) \stackrel{\theta^{\prime}}{\Rightarrow} \begin{cases}Q_{\theta^{\prime}} & \theta^{\prime} \neq \theta \\ \delta_{0} & \text { otherwise }\end{cases}
$$

That is, we can always construct a dominating estimator sequence. The above is the Hodges' estimator. See graph in Chapter 5 slides and van der Vaart Chapter 8.

- Almost everywhere convolution. Assume a QMD model at every θ with nonsingular information I_{θ}. Suppose $\sqrt{n}\left(\theta_{n}-\theta\right) \stackrel{\theta}{\Rightarrow} Q_{\theta}$ for every θ. Then, for almost every θ, there exists M_{θ} s.t.

$$
Q_{\theta} \equiv Z+\epsilon
$$

where $Z \sim N\left(0, I_{\theta}^{-1}\right)$ and $\epsilon \sim M_{\theta}$.

- Convolution for regular estimators. Let θ_{n} be a regular estimator sequence. Under the same conditions as the a.e. convolution theorem, for all θ, there exists M_{θ} such that

$$
Q_{\theta} \equiv Z+\epsilon
$$

where $Z \sim N\left(0, I_{\theta}^{-1}\right)$ and $\epsilon \sim M_{\theta}$.

- Anderson's lemma. This theorem coupled with a convolution theorem shows that the MLE is asymptotically optimal, i.e. achieves a lower bound. Let $Z \sim N(0, \Sigma)$ and $\epsilon \sim M$ be independent. If the loss L is quasiconvex and centrally symmetric, then $\mathbb{E}[L(Z)] \leq \mathbb{E}[L(Z+\epsilon)]$.

6 Minimax Lower Bounds

In nonparametric settings it is challenging to analytically derive optimal minimax risk. We look at lower and upper bounds to determine an optimal minimax rate.

6.1 Definitions

- For rule T and model \mathcal{P} the maximal risk is $\sup _{P} \mathcal{R}(T, P)$. The minimax rule has the smallest maximal risk. Having small maximal risk means a rule will work well irrespective of the true P. It can be difficult to derive the maximal risk.
- Let $P=Q^{n}$ restrict us to an iid model and \mathcal{T}_{n} denote allowable decision rules given n. A rule sequence $\left\{T_{n}\right\}$ is minimax rate optimal if

$$
\liminf _{n \rightarrow \infty} \frac{\inf _{T \in \mathcal{T}_{n}} \sup _{Q} \mathcal{R}\left(T, Q^{n}\right)}{\sup _{Q} \mathcal{R}\left(T_{n}, Q^{n}\right)}>0
$$

Establishing rate optimality involves knowing maximal risk of T_{n} and minimax risk. This chapter contains methods to get lower bounds on minimax risk.

- The discrepancy $d\left(P_{1}, P_{2}\right)$ between models is $\inf _{a \in \mathcal{A}}\left\{L\left(a, P_{1}\right)+L\left(a, P_{2}\right)\right\}$.
- The testing affinity $\left\|p_{1} \wedge p_{2}\right\|_{1}$ for models $P_{1}, P_{2} \ll \nu$ is

$$
\int \min \left\{\frac{d P_{1}}{d \nu}, \frac{d P_{2}}{d \nu}\right\} d \nu
$$

Draw the two density curves on the same plot for further elucidation.

- The total variation distance $\operatorname{TV}\left(P_{1}, P_{2}\right)$ is $\sup _{A \in \mathcal{A}}\left|P_{1}(A)-P_{2}(A)\right|$.
- Integrated squared error is used as the loss for regression and density problems.

$$
\operatorname{ISE}(\hat{f}, f)=\int(\hat{f}(x)-f(x))^{2} d x
$$

- The Hölder class of functions is

$$
\mathcal{F}(\beta, L) \equiv\left\{f:\left|f^{(\ell)}\left(x_{1}\right)-f^{(\ell)}\left(x_{2}\right)\right| \leq L\left|x_{1}-x_{2}\right|^{\beta-\ell}, \forall x_{1}, x_{2}\right\}
$$

where ℓ is the greatest integer less than β. So these functions are ℓ-times differentiable and satisfy some Lipschitz condition. Assuming this class is useful in smooth regression. The Lipschitz condition here, Hölder continuity, fits into a continuity heuristic.

Continuously differentiable \subseteq Lipschitz continuous \subseteq Hölder continuous \subseteq continuous

6.2 Results

- Max-min inequality. For any function $f(x, y)$ with codomain \mathbb{R},

$$
\inf _{y} \sup _{x} f(x, y) \geq \sup _{x} \inf _{y} f(x, y)
$$

- Maximal risk is \geq Bayes risk and minimax risk is \geq worst-case Bayes risk.

$$
\begin{gathered}
\sup _{P} \mathcal{R}(T, P) \geq \sup _{\Pi} r(T, \Pi) \\
\inf _{T} \sup _{P} \mathcal{R}(T, P) \geq \sup _{\Pi} \inf _{T} r(T, \Pi)
\end{gathered}
$$

- Le Cam's method. For any $P_{1}, P_{2} \in \mathcal{P}$,

$$
\inf _{T} \sup _{P} \mathcal{R}(T, P) \geq .5 \cdot d\left(P_{1}, P_{2}\right) \cdot\left\|p_{1} \wedge p_{2}\right\|_{1} \geq .25 \cdot d\left(P_{1}, P_{2}\right) \cdot \exp \left\{-\operatorname{KL}\left(P_{1}, P_{2}\right)\right\}
$$

This method proposes a lower bound on minimax risk as a tradeoff between discrepancy and testing affinity or likewise discrepancy and KL divergence. Using this method yields a rate-optimal minimax lower bound for estimating a smooth density at a specific point.

- Fano's method. For $P_{1}, \cdots, P_{N} \in \mathcal{P}$,

$$
\begin{aligned}
\inf _{T} \sup _{P} \mathcal{R}(T, P) & \geq \frac{\eta}{2}\left(1-\frac{\log 2+N^{-1} \sum_{j=1}^{N} \operatorname{KL}\left(P_{j}, \bar{P}\right)}{\log N}\right) \\
& \geq \frac{\eta}{2}\left(1-\frac{\log 2+\max _{j \neq k} \mathrm{KL}\left(P_{j}, P_{k}\right)}{\log N}\right)
\end{aligned}
$$

where \bar{P} is the uniform mixture and η is the minimum discrepancy. Using this method yields a rate-optimal minimax lower bound for smooth regression problems.

- Eight or more lemma. This lemma from Varshamov and Gilbert suggests that subsets of high-dimensional hypercubes exist such that the minimum Hamming distance is large. Let Ω be an m-dimensional hypercube. If $m \geq 8$, then $|\Omega| \geq 2^{m / 8}$ and the minimum Hamming distance is $\geq m / 8$. We take advantage of the implied inequalities in an example applying Fano's method to a smooth regression problem.
- Pinsker's inequality. For all distributions P_{1} and P_{2},

$$
\operatorname{TV}\left(P_{1}, P_{2}\right) \leq \sqrt{\mathrm{KL}\left(P_{1}, P_{2}\right) / 2}
$$

This belongs to a distribution distances heuristic involved in bound arguments.

$$
\mathrm{TV} \leq \text { Hellinger distance } \leq \sqrt{\mathrm{KL}} \leq \sqrt{\chi^{2}}
$$

6.3 Examples

- $\operatorname{KL}\left(N\left(\mu_{1}, 1\right), N\left(\mu_{2}, 1\right)\right)=\frac{1}{2}\left(\mu_{1}-\mu_{2}\right)^{2}$
- See slides 25-36 for applying Fano's method to determine a tight lower bound for smooth regression problems. The K function on slide 27 is a bump function and $m \leq 1 / h-1$ such that bumps don't overlap and the function is infinitely differentiable (very smooth). At various points the argument is to redefine constant terms c_{i} and/or massage known inequalities like those from the Varshamov-Gilbert lemma.
- In this example the minimum Hamming distance appears in formulas for the discrepancy and the KL divergence. The Hamming distance is the number of discordant positions when comparing two byte strings.
- Applying Le Cam's two-point method:
- For the mean θ of Rademacher random variables we derive $r_{n}^{\star}=n^{-1}$
- Density estimation from a Lipschitz class and normal errors we derive $r_{n}^{\star}=n^{-1 / 3}$
- Total variation TV is difficult to work with, so we often work with KL divergence via Pinsker's inequality. When the KL divergence is large, an alternative bound provides a tighter lower bound for Le Cam's method.
- The lower bound minimax rate for estimating $\operatorname{Hölder}(\beta, L)$ density at a point is $n^{-\frac{2 \beta}{2 \beta+1}}$.

Total variation	TV $(P, Q)=\sup _{A}\|P(A)-Q(A)\|$		
L_{1} distance	$d_{1}(P, Q)=\int\|p-q\|$		
L_{2} distance	$d_{2}(P, Q)=\sqrt{\int\|p-q\|^{2}}$		
Hellinger distance	$h(P, Q)=\sqrt{\int(\sqrt{p}-\sqrt{q})^{2}}$		
Kullback-Leibler distance	$\mathrm{KL}(P, Q)=\int p \log (p / q)$		
χ^{2}	$\chi^{2}(P, Q)=\int(p-q)^{2} / p$		
Affinity	$\\|P \wedge Q\\|=\int p \wedge q=\int \min \{p(x), q(x)\} d x$		
Hellinger affinity	$A(P, Q)=\int \sqrt{p q}$		

Figure 1: Distance metrics for probability distributions.

Seth Temple
sdtemple@uw.edu

Below and on the previous page I share from Wasserman's Chapter 36 on minimax theory.
36.78 Theorem. The following relationships hold:

1. $\operatorname{TV}(P, Q)=\frac{1}{2} d_{1}(P, Q)=1-\|p \wedge q\|$. (Scheffés Theorem.)
2. $\operatorname{TV}(P, Q)=P(A)-Q(A)$ where $A=\{x: p(x)>q(x)\}$.
3. $0 \leq h(P, Q) \leq \sqrt{2}$.
4. $h^{2}(P, Q)=2(1-A(P, Q))$.
5. $\|P \wedge Q\|=1-\frac{1}{2} d_{1}(P, Q)$.
6. $\|P \wedge Q\| \geq \frac{1}{2} A^{2}(P, Q)=\frac{1}{2}\left(1-\frac{h^{2}(P, Q)}{2}\right)^{2}$. (Le Cam's inequalities.)
7. $\frac{1}{2} h^{2}(P, Q) \leq \operatorname{TV}(P, Q)=\frac{1}{2} d_{1}(P, Q) \leq h(P, Q) \sqrt{1-\frac{h^{2}(P, Q)}{4}}$.
8. $\mathrm{TV}(P, Q) \leq \sqrt{\mathrm{KL}(P, Q) / 2}$. (Pinsker's inequality.)
9. $\|P \wedge Q\| \geq \frac{1}{2} e^{-\mathrm{KL}(P, Q)}$.
10. $\operatorname{TV}(P, Q) \leq h(P, Q) \leq \sqrt{\mathrm{KL}(P, Q)} \leq \sqrt{\chi^{2}(P, Q)}$.

Figure 2: Relationships between probability distances.

36.79 Theorem. The following relationships hold:

1. $h^{2}\left(P^{n}, Q^{n}\right)=2\left(1-\left(1-\frac{h^{2}(P, Q)}{2}\right)^{n}\right)$.
2. $\left\|P^{n} \wedge Q^{n}\right\| \geq \frac{1}{2} A^{2}\left(P^{n}, Q^{n}\right)=\frac{1}{2}\left(1-\frac{1}{2} h^{2}(P, Q)\right)^{2 n}$.
3. $\left\|P^{n} \wedge Q^{n}\right\| \geq\left(1-\frac{1}{2} d_{1}(P, Q)\right)^{n}$.
4. $\mathrm{KL}\left(P^{n}, Q^{n}\right)=n \mathrm{KL}(P, Q)$.

Figure 3: Relationships between probability distances.

7 Kernel Density Estimation

Kernel density estimators offer a upper bound for smooth density estimation that matches the lower bound rate, completing the argument for an optimal rate.

7.1 Definitions

- A kernel $K: \mathbb{R} \rightarrow \mathbb{R}$ satifies that $\int K(u) d u=1$. A kernel density estimator takes form

$$
\hat{f}_{h}(x)=\frac{1}{n h} \sum_{i=1}^{n} K\left(\frac{X_{i}-x}{h}\right)
$$

where bandwidth h is a tuning parameter. The bandwidth controls the smoothness of the KDE, subsequently impacting the bias-variance tradeoff. Large h results in more smoothing, larger bias, and smaller variance. Small h results in less smoothing, smaller bias, and larger variance.

- Up to $s-1$, the moments of an $s^{\text {th }}$-order kernel are zero and the $s^{\text {th }}$ moment is finite.
- Twicing is when we combine two related KDEs to get a KDE more amenable to confidence intervals based on asymptotic normality.

$$
\frac{4 \hat{f}_{h}(x)-\hat{f}_{2 h}(x)}{3}
$$

7.2 Results

- The empirical cumulative distribution function is a good estimator for the CDF. However, it is a step function, so its derivative is not an ideal estimator for the density.
- Kernel density estimators for $\operatorname{Hölder}(\beta, L)$ smooth densities achieve upper bound rate

$$
r_{n}^{\star} \asymp n^{-\frac{2 \beta}{2 \beta+1}}
$$

Thus, the rate r_{n}^{\star} is an optimal rate for $\operatorname{Hölder}(\beta, L)$ density estimation. We arrive at this upper bound by setting $h_{n} \propto n^{-\frac{1}{2 \beta+1}}$, a compromise in managing bias squared and variance. For d-dimensional densities, the rate is modified to $n^{-\frac{2 \beta}{2 \beta+d}}$. An example of the "curve of dimensionality".

- Kernel density derivative estimators have MSE bounded at rate $n^{-\frac{2(\beta-1)}{2 \beta+1}}$

Seth Temple
sdtemple@uw.edu

7.3 Examples

Here in two figures we see common kernels used in kernel density estimation.

Kernel	$K(u)$
Uniform	$\frac{1}{2} l\{\|u\| \leq 1\}$
Epanechnikov	$\frac{3}{4}\left(1-u^{2}\right) I\{\|u\| \leq 1\}$
Biweight	$\frac{15}{16}\left(1-u^{2}\right)^{2} I\{\|u\| \leq 1\}$
Triweight	$\frac{35}{32}\left(1-u^{2}\right)^{3} I\{\|u\| \leq 1\}$
Gaussian	$\frac{1}{\sqrt{2 \pi}} \exp \left\{-u^{2} / 2\right\}$.

Figure 4: Functional forms for common kernels.

Figure 5: Graphs for common kernels.

8 Concentration Inequalities

Here we study assurances that finite samples are concentrated about their mean.

8.1 Definitions

- A random variable X is sub-Gaussian if its tails are lighter than Gaussian tails. Parameterized with σ^{2}, for all $\lambda \in \mathbb{R}$ it holds that

$$
\log M_{X-\mathbb{E}[X]}(\lambda) \leq \frac{\lambda^{2} \sigma^{2}}{2}
$$

- A nonnegative random variable X is subexponential if its tails are lighter than exponential tails. Parameterized with σ^{2} and b, for all $|\lambda|<1 / b$ it holds that

$$
\log M_{X-\mathbb{E}[X]}(\lambda) \leq \frac{\lambda^{2} \sigma^{2}}{2}
$$

- A Rademacher random variable puts $1 / 2$ weight on 1 and $1 / 2$ weight on -1 . It is like a Bernoulli random variable but with support $\{-1,1\}$.
- A function f satisfies the bounded differences property (BDP) if for all i there is some finite c_{i} such that

$$
\left|f\left(x_{1}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{i-1}, x_{i^{\prime}}, x_{i+1}, \ldots, x_{n}\right)\right| \leq c_{i}
$$

This property says that f cannot rely too much on any single input.

8.2 Results

- Markov's inequality. Let X be a nonnegative random variable with finite expected value. For $t>0$,

$$
P(X \geq t) \leq \frac{\mathbb{E}[X]}{t}
$$

- Markov's corollary. Let f be a nondecreasing function on nonnegative values and $\mathbb{E}[f(|X-\mathbb{E}[X]|)]$ finite. Extending Markov's inequality, for $t>0$,

$$
P(|X-\mathbb{E}[X]| \geq t) \leq \frac{\mathbb{E}[f(|X-\mathbb{E}[X]|)]}{f(t)}
$$

This corollary shows us how to build on Markov's inequality to generate bounds on higher moments, e.g. Chebyshev's inequality and the Chernoff bound.

- Chernoff bound. Suppose X has moment generating function in a neighborhood of zero. For $t>0$ and $\lambda \in(0, b]$,

$$
\begin{gathered}
P(X-\mathbb{E}[X] \geq t) \leq \frac{\mathbb{E}[\exp \{\lambda(X-\mathbb{E}[X])\}]}{e^{\lambda t}}=\frac{M_{X-\mathbb{E}[X]}(\lambda)}{e^{\lambda t}} \\
P(X-\mathbb{E}[X] \geq t) \leq \inf _{\lambda>0} \frac{M_{X-\mathbb{E}[X]}(\lambda)}{e^{\lambda t}}
\end{gathered}
$$

- Additivity of subexponentials and sub-Gaussians. This property is inherited as a property of moment-generating functions when we have independent random variables. See discussion on page 29 of Wainwright (2019). For independent subexponential X_{1}, \ldots, X_{n} with parameters $\left(\sigma_{i}^{2}, b_{i}\right)$, the sum of these is subexponential with parameters $\left(\sum_{i=1}^{n} \sigma_{i}^{2}, \max _{i} b_{i}\right)$.
- Hoeffding's inequality. This inequality applies to random variables with bounded support $[a, b]$. These random variables are sub-Gaussian with $\sigma^{2}=(b-a)^{2} / 4$. The second statement uses independence to extend the result to a sample mean.

$$
\begin{gathered}
\log P(X-\mathbb{E}[X] \geq t) \leq-\frac{2 t^{2}}{(b-a)^{2}} \\
\log P\left(\bar{X}_{n}-\mathbb{E}\left[\bar{X}_{n}\right] \geq t\right) \leq-\frac{2 n^{2} t^{2}}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}
\end{gathered}
$$

- Tail bound for subexponentials. If X is subexponential with parameters $\left(\sigma^{2}, b\right)$,

$$
\log P(X-\mu \geq t) \leq \begin{cases}-\frac{t^{2}}{2 \sigma^{2}}, & 0 \leq t \leq \sigma^{2} / b \\ -\frac{t}{2 b}, & t>\sigma^{2} / b\end{cases}
$$

This result suggests that the (right) tail probability in the exponent is quadratic in t for small t and linear in t for large t. See an alternative presentation with proof as Proposition 2.9 from Wainwright (2019).

- Bernstein's inequality. Let X have finite variance σ^{2} and be bounded s.t. $|X-\mu| \leq b$. For all $t>0$ we have

$$
P(X \geq \mu+t) \leq \exp \left(-\frac{t^{2}}{2\left(\sigma^{2}+b t\right)}\right)
$$

If we have an independent collection of random variables so bounded and with possibly unique mean and finite variances, then for all $t>0$

$$
P\left(\bar{X}_{n} \geq \mathbb{E}\left[\bar{X}_{n}\right]+t\right) \leq \exp \left(-\frac{t^{2}}{2\left(b t+\sum_{i=1}^{n} \sigma_{i}^{2} / n\right)}\right)
$$

Bernstein's may be tighter than Hoeffding's when variances are small.

- Bernstein's expectation bound. Suppose we have a Bernstein-like tail inequality for nonnegative X. In Homework 3 Problem 1 we show

$$
\mathbb{E}[X] \leq 2 \sigma(\sqrt{\pi}+\sqrt{\log C})+4 b(1+\log C)
$$

where $\sigma^{2}, b>0$ and $C \geq 1$.

- Bennet's inequality. Given independent X_{1}, \ldots, X_{n} with zero mean, $X_{i} \in[-b, b]$, and variances σ_{i}^{2},

$$
P(\bar{X} \geq t) \leq \exp \left(-\frac{n \bar{\sigma}^{2}}{b^{2}} h\left(\frac{b t}{\bar{\sigma}^{2}}\right)\right)
$$

where $\bar{\sigma}^{2}=1 / n \sum_{i=1}^{n} \sigma_{i}^{2}$ and $h(y)=(1+y) \log (1+y)-y$ for $y \geq 0$. This inequality is at least as tight as Bernstein's. See Exercise 2.7 in Wainwright for a walkthrough.

- Efron-Stein inequality. Let $f: \mathcal{X} \rightarrow \mathbb{R}$, and assume independent random variables.

$$
\begin{aligned}
\operatorname{Var}(f(\mathbf{X})) & \leq \frac{1}{2} \sum_{i=1}^{n} \mathbb{E}\left[\left(f(\mathbf{X})-f\left(\mathbf{X}^{(i)}\right)\right)^{2}\right] \\
& =\sum_{i=1}^{n} \mathbb{E}\left[\left(f(\mathbf{X})-\mathbb{E}\left[f(\mathbf{X}) \mid X^{(i)}\right]\right)^{2}\right]
\end{aligned}
$$

Further assumptions on f enable nicer forms on the bound. See homework 2. Proving this involves a novel strategy.

- Bounded differences inequality. Let $X=\left(X_{1}, \ldots, X_{n}\right)$ be an independent collection of random variables and f satisfy BDP with bounds c_{1}, \ldots, c_{n}. For $t>0$ and $\mathbb{E}[|f(X)|]$ finite,

$$
P(|f(X)-\mathbb{E}[f(X)]| \geq t) \leq 2 \exp \left\{-\frac{2 t^{2}}{\sum_{i=1}^{n} c_{i}^{2}}\right\}
$$

This inequality is referred to as McDiarmid's inequality. Proving it involves a novel telescoping argument and the Azuma-Hoeffding inequality. See slides 34-39.

- Martingale differences inequality. Consider the martingale difference sequence:

$$
\begin{aligned}
D_{1} & =\mathbb{E}\left[f(X) \mid X_{1}\right]-\mathbb{E}[f(X)] \\
D_{2} & =\mathbb{E}\left[f(X) \mid X_{1}, X_{2}\right]-\mathbb{E}\left[f(X) \mid X_{1}\right] \\
\vdots & \\
D_{n} & =\mathbb{E}\left[f(X) \mid X_{1}, \ldots, X_{n}\right]-\mathbb{E}\left[f(X) \mid X_{1}, \ldots, X_{n-1}\right]
\end{aligned}
$$

Further assume the conditions of the bounded differences inequality. Then,

$$
P\left(\left|\sum_{i=1}^{n} D_{i}\right| \geq t\right) \leq 2 \exp \left\{-\frac{2 t^{2}}{\sum_{i=1}^{n} c_{i}^{2}}\right\}
$$

This inequality is referred to as the Azuma-Hoeffding inequality.
sdtemple@uw.edu

8.3 Examples

- Sub-Gaussian random variables.
- Gaussian
- Beta
- Uniform
- Any bounded random variable
- Not sub-Gaussian random variables.
- Double-exponential
- Student t
- Cauchy
- Subexponential random variables.
- Exponential
- Gaussian
$-\chi^{2}$
- Not subexponential random variables.
- Log-Normal
- Weibull
- Pareto
- Not sub-Gaussian random variables
- See Examples 2.11 and 2.12 in Wainwright (2019). Together these examples show how to reduce dimension based on a random projection while maintaining certain guarantees about the dimension reduction. This is done by leveraging properties of subexponential χ^{2} random variables.
- See Slides 14-16 from Chapter 3 for a discussion of the Chernoff bound for normal random variables being in some sense aymptotically tight. Additionally, this example shows how to derive MGFs using a change of variables.

9 Empirical Risk Minimization (ERM)

We establish tools to bound the regret in ERM by bounding empirical process terms, e.g. bounding the Rademacher complexity.

9.1 Definitions

- For a set Θ, an empirical risk minimizer $\hat{\theta}$ is such that $P \ell(\hat{\theta})$ is close to $\inf _{\theta \in \Theta} P \ell(\theta)$, denoting θ_{0} here as the arg min. In decision theory, we talk about θ as a parameter that characterizes a parametric family. As a result, we look explicitly at the discrepancy between $\hat{\theta}$ and θ. Here we instead look at differences in expectation, introducing the term regret:

$$
\operatorname{Reg}(\hat{\theta})=P(\ell(\hat{\theta}))-P\left(\ell\left(\theta_{0}\right)\right)
$$

- A ghost sample is an independent (copy) sample $X_{1}^{\prime}, \ldots, X_{n}^{\prime}$ used in Rademacher symmetrization arguments. See Chapter 4 Part 1 Slides 13-18 for this technique.
- Let $\varepsilon_{1}, \ldots, \varepsilon_{n}$ be Rademacher random variables, and define the Rademacher process

$$
R_{n}:=\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} f\left(X_{i}\right)
$$

We denote $\left\|R_{n}\right\|_{\mathcal{F}}:=\sup _{f \in \mathcal{F}}\left|R_{n}(f)\right|$ and call $\mathbb{E}\left\|R_{n}\right\|_{\mathcal{F}}$ the Rademacher complexity.

- The growth function or shattering number measures the richness of the class \mathcal{F}

$$
\Pi_{\mathcal{F}}(n):=\sup _{x_{1}, \ldots, x_{n}}\left|\mathcal{F}_{x_{1}, \ldots, x_{n}}\right|
$$

We discuss shattering in the context of function classes or sets. We say n points are shattered by \mathcal{F} if $\Pi_{\mathcal{F}}(n)=2^{n}$. Below are some properties of growth functions.
$-\Pi_{\mathcal{A}}(n+m) \leq \Pi_{\mathcal{A}}(n) \Pi_{\mathcal{A}}(m)$
$-\Pi_{\mathcal{A} \cup \mathcal{B}}(n) \leq \Pi_{\mathcal{A}}(n)+\Pi_{\mathcal{B}}(n)$
$-\Pi_{A \cup B: A \in \mathcal{A}, B \in \mathcal{B}}(n) \leq \Pi_{\mathcal{A}}(n) \Pi_{\mathcal{B}}(n)$
$-\Pi_{A \cap B: A \in \mathcal{A}, B \in \mathcal{B}}(n) \leq \Pi_{\mathcal{A}}(n) \Pi_{\mathcal{B}}(n)$

- The Vapnik-Chervonenkis (VC) dimension is the largest n such that a function class still shatters n points. The VC index is one plus the VC dimension, i.e. the first n such that a function class can't shatter n points. Write $\mathrm{VC}(\mathcal{F})$ as VC dimension of \mathcal{F}. We say a function class \mathcal{F} (or set \mathcal{A}) is VC if it has finite VC dimension. VC theory is for classification problems.
- For $r \geq 1, L^{r}(P)$ is the space of functions f s.t. $\|f\|_{L^{r}(P)}:=\left(\int|f(x)|^{r} d P(x)\right)^{1 / r}<\infty$. The sup norm or uniform norm is $\sup _{f \in \mathcal{F}}|f|$.
- A Glivenko-Cantelli (GC) theorem is one where the implication is $\left\|P_{n}-P\right\|_{\mathcal{F}}=o_{P}(1)$.
- A bracket $[\ell, u]$ is the set of $f \in \mathcal{F}$ s.t. $\ell \leq f \leq u$ pointwise. An ϵ-bracket is a bracket $[\ell, u]$ satisfying $\|u-\ell\|_{L^{r}(P)} \leq \epsilon$. The bracketing number $N_{\square}\left(\epsilon, \mathcal{F}, L^{r}(P)\right)$ is the minimum cardinality of ϵ-brackets required to cover function class \mathcal{F}.
- A pseudometric d, related to a metric, has ii) symmetry and iii) triangle inequality, but does not have i) the identity of indiscernibles. $d(x, y)=0$ does not imply $x=y$. This is a more flexible quantity for discussing functions in $L^{r}(P)$ space.
- A subset T_{1} of a pseudometric space T is an ϵ-cover if for each $\theta \in T$ there is $\theta_{1} \in T_{1}$ s.t. $d\left(\theta_{1}, \theta\right) \leq \epsilon$. Visually, T is a subset of a union of ϵ-balls centered at point in T_{1}. The ϵ-covering number $N(\epsilon, T, d)$ is the minimum cardinality among possible ϵ-covers. The logarithm of the ϵ-covering number is refered to as the metric entropy. (We say T is totally bounded if for all positive ϵ there exists a finite ϵ-cover.)
- A subset T_{1} of a pseudometric space T is an ϵ-packing if $d\left(\theta, \theta^{\prime}\right)>\epsilon$ for each pair $\theta, \theta^{\prime} \in T_{1}$. Visually, ϵ-balls centered at points in T_{1} do not overlap. The ϵ-packing number $M(\epsilon, T, d)$ is the maximum cardinality among possible ϵ-packings.
- A stochastic process $\left\{X_{\theta}: \theta \in T\right\}$ is a collection of (indexed) random variables. It is zero-mean if $\mathbb{E}\left[X_{\theta}\right]=0$ for all indices θ. It is sub-Gaussian w.r.t. d if, for all pairs $\theta, \theta^{\prime} \in T$ and for all $\lambda \in \mathbb{R}$,

$$
\mathbb{E}\left[\exp \left\{\lambda\left(X_{\theta}-X_{\theta^{\prime}}\right)\right\}\right] \leq \exp \left(\frac{\lambda^{2} d\left(\theta, \theta^{\prime}\right)}{2}\right)
$$

This generalizes sub-Gaussianity from Section 8 to stochastic processes.

- The canonical Rademacher process is a zero-mean, sub-Gaussian random process:

$$
X_{\theta}=\sum_{i=1}^{n} \theta_{i} \varepsilon_{i}=\langle\theta, \varepsilon\rangle
$$

The canonical Gaussian process is a defined in the same fashion with $\varepsilon_{1}, \ldots, \varepsilon_{n}$ being standard normals instead of Rademachers.

- The diameter D of a (pseudometric) space T is $\sup _{\theta, \theta^{\prime}} d\left(\theta, \theta^{\prime}\right)$.
- An envelope function F for $f \in \mathcal{F}$ is s.t. $|f| \leq F$ pointwise.

9.2 Results

- Regret bound. See slides 9 and 10 for explanation of notation.

$$
\begin{aligned}
0 & \leq \operatorname{Reg}(\hat{\theta}) \\
& \leq\left(P_{n}-P\right)\left(\ell\left(\theta_{0}\right)-\ell(\hat{\theta})\right) \\
& \leq 2 \sup _{f \in \mathcal{F}}|(P-n-P) f| \\
& =2\left\|P_{n}-P\right\|_{\mathcal{F}}
\end{aligned}
$$

Often we bound $\left\|P_{n}-P\right\|_{\mathcal{F}}$ or $\left\|R_{n}\right\|_{\mathcal{F}}$, but this loosening may be suboptimal. In Homework 5(c) we attained a tighter bounded working with $\left(P_{n}-P\right)\left(\ell\left(\theta_{0}\right)-\ell(\hat{\theta})\right)$.

- Symmetrization bound. We relate $\left\|P_{n}-P\right\|_{\mathcal{F}}$ to the Rademacher process via a symmetrization argument.

$$
\mathbb{E}\left\|P_{n}-P\right\|_{\mathcal{F}} \leq 2 \mathbb{E}\left\|R_{n}\right\|_{\mathcal{F}}
$$

Here the argument precedes by introducting the ghost sample, recognizing that $\left|\varepsilon_{i}\right|=1$, and applying the triangle inequality. A related lower bound is available by desymmetrization (similar strategy).

- Tight control using Rademacher complexity. If \mathcal{F} is a class of $[0,1]$-valued functions,

$$
\frac{1}{2} \mathbb{E}\left\|R_{n}\right\|_{\mathcal{F}}-\sqrt{\frac{\log 2}{2 n}} \leq \mathbb{E}\left\|P_{n}-P\right\|_{\mathcal{F}} \leq 2 \mathbb{E}\left\|R_{n}\right\|_{\mathcal{F}}
$$

With probability $1-2 \exp \left(-2 n t^{2}\right)$, for all $t>0$

$$
\mathbb{E}\left\|P_{n}-P\right\|_{\mathcal{F}}-t \leq\left\|P_{n}-P\right\|_{\mathcal{F}} \leq \mathbb{E}\left\|P_{n}-P\right\|_{\mathcal{F}}+t
$$

The second result uses the first result and applies McDiarmids' BDP inequality.

- Counting operations. For a family of boolean-valued functions

$$
\mathcal{F}=\left\{x \mapsto f\left(x, \theta: \theta \in \mathbb{R}^{p}\right)\right\},
$$

where each $f: \mathbb{R}^{m} \times \mathbb{R}^{p} \rightarrow\{0,1\}$, suppose f is computed in no more than t arithmetic or comparison operations. Then, $\mathrm{VC}(\mathcal{F}) \leq 4 p(t+2)$.

- Finite class lemma. If \mathcal{F} is a function class s.t. $|f(x)| \leq 1$,

$$
\mathbb{E}\left\|R_{n}\right\|_{\mathcal{F}} \leq \sqrt{\frac{2 \log \left(2 \mathbb{E}\left|\mathcal{F}_{X_{1}^{n}}\right|\right)}{n}}
$$

This pivotal result provides a bound for the Rademacher complexity when \mathcal{F} is a bounded function class. The proof strategy is to condition on X_{1}^{n}, use Jensen's and sub-Gaussianity to loosen the bound, and then integrate over X_{1}^{n}. When \mathcal{F} is VC,

$$
\mathbb{E}\left\|P_{n}-P\right\|_{\mathcal{F}} \leq 2 \mathbb{E}\left\|R_{n}\right\|_{\mathcal{F}} \leq 2 \sqrt{2 \log \left(2 \Pi_{\mathcal{F}}(n)\right) / n}
$$

- Generalized finite class lemma. If $\left\{X_{\theta}: \theta \in T\right\}$ is sub-Gaussian w.r.t. d and $A \subseteq T \times T$,

$$
\mathbb{E} \max _{\left(\theta, \theta^{\prime}\right) \in A}\left(X_{\theta}-X_{\theta^{\prime}}\right) \leq \sqrt{2 \log |A|} \cdot \max _{\left(\theta, \theta^{\prime}\right) \in A} d\left(\theta, \theta^{\prime}\right)
$$

- Sauer's lemma. If $\operatorname{VC}(\mathcal{F}) \leq d$, then we have two bounds on the growth function.

$$
\begin{gathered}
\Pi_{\mathcal{F}}(n) \leq \sum_{k=0}^{d}\binom{n}{k} \\
\Pi_{\mathcal{F}}(n) \leq \begin{cases}2^{n}, & n \leq d \\
\left(e^{1} n / d\right)^{d}, & n>d\end{cases}
\end{gathered}
$$

Past the VC dimension, we're only polynomial in n. When $\operatorname{VC}(\mathcal{F}) \leq d<n$,

$$
\mathbb{E}\left\|P_{n}-P\right\|_{\mathcal{F}} \leq 2 \mathbb{E}\left\|R_{n}\right\|_{\mathcal{F}} \leq 2 \sqrt{\left(2 \log (2)+2 d \log \left(e^{1} n / d\right)\right) / n}
$$

- Standard Glivenko-Cantelli. If $N_{\square}\left(\epsilon, \mathcal{F}, L^{1}(P)\right)$ finite for every positive ϵ, then

$$
\left\|P_{n}-P\right\|_{\mathcal{F}}=o_{P}(1)
$$

- More general GC. If the sup metric entropy over all discrete distributions Q is finite for all positive ϵ and $f \in \mathcal{F}$ have range in $[-M, M]$,

$$
\left\|P_{n}-P\right\|_{\mathcal{F}}=o_{P}(1)
$$

- Covering versus packing. For all $\epsilon>0$,

$$
M(2 \epsilon, T, d) \leq N(\epsilon, T, d) \leq M(\epsilon, T, d)
$$

- Bracketing versus covering. Let \mathcal{F} be a subset of some $L^{r}(P)$ space. For $\epsilon>0$,

$$
N_{\square}\left(2 \epsilon, \mathcal{F}, L^{r}(P)\right) \leq N\left(\epsilon, \mathcal{F},\|\cdot\|_{\infty}\right)
$$

- Discretization bound. Let $\left\{X_{\theta}: \theta \in T\right\}$ be a zero-mean, sub-Gaussian process, and let D be the diameter of T. For all positive ϵ,

$$
\mathbb{E} \sup _{\theta \in T} X_{\theta} \leq 2 \mathbb{E} \sup _{d\left(\theta, \theta^{\prime}\right) \leq \epsilon}\left(X_{\theta}-X_{\theta^{\prime}}\right)+2 D \sqrt{\log N(\epsilon, T, d)}
$$

We achieve this by a \pm trick, loosening with sup, and applying a finite class lemma.

- Chaining bound. Same setup as for the discretization bound. For all positive ϵ,

$$
\mathbb{E} \sup _{\theta \in T} X_{\theta} \leq \mathbb{E} \sup _{d\left(\theta, \theta^{\prime}\right) \leq \epsilon}\left(X_{\theta}-X_{\theta^{\prime}}\right)+8 \int_{\epsilon / 2}^{D} \sqrt{\log (N(\delta, T, d))} d \delta
$$

For separable stochastic processes,

$$
\mathbb{E} \sup _{\theta \in T} X_{\theta} \leq 8 \int_{0}^{D} \sqrt{\log N(\delta, T, d)} d \delta
$$

Alex offered an extra lecture on proving the separable case. We achieve this by iteratively applying a finite class lemma in a clever way. This bound is generally tighter than the discretization bound.

- Chaining to control Rademacher complexity. If \mathcal{F} is closed under negations,

$$
\mathbb{E}\left\|R_{n}\right\|_{\mathcal{F}} \leq 8 n^{-1 / 2} \mathbb{E} \int_{0}^{\infty} \sqrt{\log N\left(\delta, \mathcal{F}, L^{2}\left(P_{n}\right)\right)} d \delta \leq 8 n^{-1 / 2} \sup _{Q} \int_{0}^{\infty} \sqrt{\log N\left(\delta, \mathcal{F}, L^{2}(Q)\right)} d \delta
$$

- Bracketing integral bound. There is a universal positive constant C s.t for any class \mathcal{F} with envelope function F,

$$
\mathbb{E}\left\|P_{n}-P\right\|_{\mathcal{F}} \leq C n^{-1 / 2}\|F\|_{L^{2}(P)} \int_{0}^{1} \sqrt{\log N_{\square}\left(\delta\|F\|_{L^{2}(P)}, \mathcal{F}, L^{2}(P)\right)} d \delta
$$

9.3 Examples

- Vapnik-Chervonenkis (Some visuals)
- Dimension/index (Homework 3 Problem 4)
* $\{(-\infty, b]: b \in \mathbb{R}\}$ has VC index 2 .
* $\left\{\left(-\infty, b_{1}\right] \times\left(-\infty, b_{d}\right]: b_{1}, \ldots, b_{d} \in \mathbb{R}\right\}$ has VC index $d+1$
* $\left\{\left(a_{1}, b_{1}\right] \times\left(a_{1}, b_{d}\right]: a_{1}, \ldots, a_{d}, b_{1}, \ldots, b_{d} \in \mathbb{R}\right\}$ has VC index $2 d+1$
* $\{(a, b]: a, b \in \mathbb{R}\}$ has VC index 3 .
* $\left\{\left(a_{1}, b_{1}\right] \times\left(a_{2}, b_{2}\right]:\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right) \in \mathbb{R}^{2}\right\}$ has VC index 5.
* $\{x \mapsto g(x-\theta): \theta \in \mathbb{R}, g: \mathbb{R} \rightarrow \mathbb{R}$ monotone $\}$ has VC index 2.
* Collection of convex sets in \mathbb{R}^{2} has VC index ∞.
* $\left\{x \in \mathbb{R}^{2}:\|x-a\|_{2} \leq b\right\}$ has VC index 4 .
- Applying the "counting operations" lemma
* Linear threshold class is VC
* Neural network classifiers are VC and we can attain probabilistic guarantees for regret (Homework 4 Problem 2)
- Permanence of VC classes (Homework 4 Problem 1)
* $\{\{x: f(x)>0\}: f \in \mathcal{F}\}$
* $\{\{x \mapsto f(x)+g(x)\}: f \in \mathcal{F}, g$ fixed $\}$
* $\{\{x \mapsto f(x) g(x)\}: f \in \mathcal{F}, g$ fixed $\}$
- Permanence of Rademacher complexity (Homework 3 Problem 2)
$-\mathbb{E}\left\|R_{n}\right\|_{\mathcal{F}}=\mathbb{E}\left\|R_{n}\right\|_{\operatorname{conv}(\mathcal{F})}$
$-\mathbb{E}\left\|R_{n}\right\|_{\mathcal{F}+\mathcal{G}} \leq \mathbb{E}\left\|R_{n}\right\|_{\mathcal{F}}+\mathbb{E}\left\|R_{n}\right\|_{\mathcal{G}}$
$-\mathbb{E}\left\|R_{n}\right\|_{\mathcal{F}+f_{0}} \leq \mathbb{E}\left\|R_{n}\right\|_{\mathcal{F}}+n^{-1 / 2}\left\|f_{0}\right\|_{\infty}$ for uniformly bounded f_{0}
- Permanence of Glivenko-Cantelli classes (Homework 3 Problem 3)
$-\left\{x \mapsto a f(x)+b g(x): f \in \mathcal{F}, g \in \mathcal{G},(a, b) \in[-1,1]^{2}\right\}$
$-\mathcal{F} \cup \mathcal{G}$
- functions that are pointwise limit and $L^{1}(P)$-limit of a sequence in \mathcal{F}
- Bracketing
- Proving the standard GC theorem (Chapter 4 Part 2 Slides 5-8)
- Homework 4 Problem 3 (very hard, see solutions)
- Sobolev classes (not covered, Chapter 4 Part 2 Slides 58)
- Various examples in vdV textbook (Chapter 19)
- ϵ-covering
- For a bounded r-dimensional set $N(\epsilon) \asymp \epsilon^{-r}$ for any ℓ_{p} metric
$-(r / \epsilon)^{d} \leq N\left(\epsilon, B^{d}(0, r), \ell_{p}\right) \leq(2 r / \epsilon+1)^{d}$
$-N\left(\epsilon, \mathcal{F},\|\cdot\|_{\mathcal{F}}\right) \leq N\left(\epsilon / L, B,\|\cdot\|_{b}\right)$ for $\mathcal{F}:=\{x \mapsto f(x, \beta: \beta \in B)\}$ with an L-Lipschitz condition (Chapter 4 Part 2 Slides 17-18)
$-\log N\left(\epsilon, \mathcal{F},\|\cdot\|_{\infty}\right)=\Theta(L / \epsilon)$ for L-Lipschitz $[0,1] \rightarrow[0,1]$ functions
$-\log N\left(\epsilon, \mathcal{F},\|\cdot\|_{\infty}\right)=\Theta\left((L / \epsilon)^{d}\right)$ for L-Lipschitz $[0,1]^{d} \rightarrow[0,1]$ functions
$-\log N\left(\epsilon, \mathcal{F}_{z_{1}^{n}} \cup-\mathcal{F}_{z_{1}^{n}}, \ell_{2}\right)=\log N\left(\epsilon n^{-1 / 2}, \mathcal{F} \cup-\mathcal{F}, L^{2}\left(P_{n}\right)\right)$
- Homework 4 Problem 4 (very hard, see solutions)
- Various examples in Wainwright textbook (Chapters 4 and 5)
- ϵ-packing
- $M\left(\epsilon, B^{d}(0, r), \ell_{p}\right) \leq(3 r / \epsilon)^{d}$
- Any ϵ-covering example can be translated to be an ϵ-packing example

Seth Temple
sdtemple@uw.edu

- The one-step discretization bound for the canonical Rademacher process provides

$$
\mathbb{E} \sup _{\theta \in T} X_{\theta} \leq 2 n^{1 / 2} \delta+2 D \sqrt{\log N\left(\delta, T, \ell_{2}\right)}
$$

- The one-step discretization bound for Rademacher complexity provides

$$
\mathbb{E}\left\|R_{n}\right\|_{\mathcal{F}} \leq 2 \delta+2 \mathbb{E}\left[D_{Z_{1}^{n}}\right] n^{-1} \sup _{Q} \sqrt{\log 2 N\left(\delta, \mathcal{F}, L^{2}(Q)\right)}
$$

10 Weak Convergence

We study the properties and applications of classes of random functions for which a uniform central limit theorem is available. (This section begins the transition from instructor Alex Luedtke to instructor Marco Sadinle.)

10.1 Definitions

- The empirical process \mathbb{G}_{n} is $\sqrt{n}\left(P_{n}-P\right)$. When we apply it to functions $f \in \mathcal{F}$, we get a random variable. We study the stochastic process $\left\{\mathbb{G}_{n} f: f \in \mathcal{F}\right\}$.
- For measurable f and possibly nonmeasurable X, the outer expectation is

$$
\mathbb{E}^{*}[f(X)]=\inf \{\mathbb{E}[U]: U \text { measurable, } U \geq f(X), \text { and } \mathbb{E}[U] \text { exists }\}
$$

A similar definition works for inner expectation \mathbb{E}_{*}. Outer and inner probabilities can be defined using indicator functions. The measurability concerns related to these notions we do not cover.

- A stochastic process X_{n} on \mathcal{F} is called asymptotically uniform ρ-equicontinuous if, for all positive sequences $\delta_{n} \rightarrow 0$ and $\mathcal{F}\left(\delta_{n}\right)=\left\{\left(f_{1}, f_{2}\right): f_{1}, f_{2} \in \mathcal{F}, \rho\left(f_{1}, f_{2}\right)<\delta_{n}\right\}$,

$$
\sup _{f_{1}, f_{2} \in \mathcal{F}\left(\delta_{n}\right)}\left|X_{n}\left(f_{1}\right)-X_{n}\left(f_{2}\right)\right|=o_{P}(1)
$$

Here the pseudometric ρ is important. With this sense of uniform continuity and convergence in distribution of marginals, we achieve a weak convergence.

- A random variable X is tight if for every $\epsilon>0$ there is a compact set K such that $P(X \in K) \geq 1-\epsilon$.
- An envelope function \bar{F} is such that $\sup _{f \in \mathcal{F}}|f(x)| \leq \bar{F}(x)$ for all x.
- If $\mathbb{G}_{n} \rightsquigarrow \mathbb{G}$ in $\ell^{\infty}(\mathcal{F})$ where \mathbb{G} is tight, then \mathcal{F} is called P_{0}-Donsker. This \mathbb{G} is a meanzero Gaussian process with covariance $(f, g) \mapsto \mathbb{E}_{P_{0}}[\mathbb{G} f \mathbb{G} g]=P_{0}(f g)-P_{0}(f) P_{0}(g)$. A pseudometric guaranteed to exist is the standard deviation pseudometric:

$$
\rho_{0}:\left(f_{1}, f_{2}\right) \mapsto \sqrt{P_{0}\left(\left(f_{1}-f_{2}\right)^{2}\right)-\left(P_{0}\left(f_{1}-f_{2}\right)\right)^{2}}
$$

- The variation norm of $f: \mathbb{R} \rightarrow \mathbb{R}$ is $\|f\|_{V}=\int|d f(x)|$. This measures all movement along the y-axis. The uniform sectional variation norm $\|f\|_{V}^{*}$ of a function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ generalizes this univariate definition by considering generalized Riemann differences in slices. See slide 19 from chapter 0 notes, with special attention to the $m=2$ case. See van der Laan's 1996 thesis for more details.

10.2 Results

- Generalized portmanteau. Let X_{1}, X_{2}, \ldots be a sequence of arbitrary maps and X be another (random) map, all taking values in metric space (\mathbb{D}, d). Weak convergence $X_{n} \rightsquigarrow X$ has many equivalent characterizations:
- $\mathbb{E}^{*}\left[f\left(X_{n}\right)\right] \rightarrow \mathbb{E}[f(X)]$ for all bounded, continuous f.
- $\mathbb{E}^{*}\left[f\left(X_{n}\right)\right] \rightarrow \mathbb{E}[f(X)]$ for all bounded, Lipschitz-continuous f.
- $\lim \sup _{n} \mathbb{E}^{*}\left[f\left(X_{n}\right)\right] \leq \mathbb{E}\left[f\left(X_{n}\right)\right]$ for every upper semicontinuous f bounded above.
$-\liminf _{n} E_{*}\left[f\left(X_{n}\right)\right] \geq \mathbb{E}[f(X)]$ for every lower semicontinuous f bounded below.
$-\lim \sup _{n} P^{*}\left(X_{n} \in F\right) \leq P(X \in F)$ for all closed F.
$-\liminf _{n} P_{*}(X \in O)$ for all open O.
- $P^{*}\left(X_{n} \in B\right) \rightarrow P(X \in B)$ for all continuity sets B.

This result is vdV Theorem 18.9 in the blue book. It is similar to our portmanteau theorem from our second section, but we use outer/inner expectations and probabilities for possibly nonmeasurable maps.

- Generalized continuous mapping. Let (\mathbb{D}, d) and (\mathbb{E}, e) be metric spaces. Suppose that X_{1}, X_{2}, \ldots are \mathbb{D}-valued random variables, and that X is a \mathbb{D}_{0}-valued random variable with $\mathbb{D}_{0} \subseteq \mathbb{D}$. Let $f: \mathbb{D} \rightarrow \mathbb{E}$ be continuous on \mathbb{D}_{0}. Then, $X_{n} \rightsquigarrow X$ in \mathbb{D} implies $f\left(X_{n}\right) \rightsquigarrow f(X)$ in \mathbb{E}.
- Weak convergence equivalency. X_{n} converges weakly in $\ell^{\infty}(\mathcal{F})$ to a tight random variable X if and only if

1. for each $\left\{f_{j}: j=1,2 \ldots, m\right\} \subseteq \mathcal{F}$ we have $\left\{X_{n}\left(f_{j}\right)\right\} \rightsquigarrow\left\{X\left(f_{j}\right)\right\}$;
2. there exists a pseudometric ρ on \mathcal{F} such that

- (\mathcal{F}, ρ) is totally bounded;
- X_{n} is asymptotically uniform ρ-equicontinuous.

The first condition is convergence in distribution of marginals. The second condition is the existence of a suitable pseudometric such that \mathcal{F} is not too rich and X_{n} is sufficiently smooth. This result is from Theorems 1.5.4 and 1.5.7 of vdV\&W (1996).

- A Slutsky result for \rightsquigarrow. Let X_{1}, \ldots and Y_{1}, \ldots be sequences of $\ell^{\infty}(\mathcal{F})$-valued random variables for some function class \mathcal{F}. If $X_{n} \rightsquigarrow X$ for some tight $\ell^{\infty}(\mathcal{F})$-valued X and $\left\|X_{n}-Y_{n}\right\|_{\mathcal{F}}=o_{P}(1)$, then $Y_{n} \rightsquigarrow X$ as well. (See Homework 0 Problem 1.)
- Controlling empirical process terms. To say that $\mathbb{G}_{n} f_{n}=o_{P}(1)$, it is sufficient to show (1) $P_{0} f_{n}^{2}=o_{P}(1)$ and (2) f_{n} is in a P_{0}-Donsker class. (This is vdV lemma 19.24. Also, see Homework 0 Problem 2.)
- Establishing Donsker classes. There are four strategies to establish a Donsker class. The brute force approach is work with the definition. The other three approaches involve entropy, permanence, and bounded variation. Entropy arguments via 582-type arguments are non-intuitive and challenging. Permanence arguments construct new Donsker classes from existing Donsker classes. Bounded variation arguments may be the most useful.
$-\mathcal{F}$ is P_{0}-Donsker if the bracketing integral $J_{]}\left(1, \mathcal{F}, L^{2}(P)\right)$ is finite.

$$
J\left(\delta, \mathcal{F}, L^{2}(P)\right)=\int_{0}^{\delta} \sqrt{\log N_{\square}\left(\epsilon, \mathcal{F}, L^{2}(P)\right)} d \epsilon
$$

$-\mathcal{F}$ is P_{0}-Donsker if it has envelope \bar{F} satisfying $P_{0}\left(\bar{F}^{2}\right)<\infty$ and it has a uniform entropy bound. See slide 15 from Marco's Chapter 0 and slide 57 from Alex's Chapter 4.2.

- Let $\mathcal{F}_{1}, \ldots, \mathcal{F}_{k}$ be P_{0}-Donsker classes with $\left\|P_{0}\right\|_{\mathcal{F}_{j}}<\infty$ for $j=1,2, \ldots, k$. Let $\phi: \mathbb{R}^{k} \rightarrow \mathbb{R}$ for which there is $C>0$ such that

$$
|\phi(f(x))-\phi(g(x))|^{2} \leq C \sum_{j=1}^{k}\left|f_{j}(x)-g_{j}(x)\right|^{2}
$$

for every $f, g \in\left\{\mathcal{F}_{1}, \ldots, \mathcal{F}_{k}\right\}$ and $x \in \mathcal{X}$. Then, $\phi \circ\left(\mathcal{F}_{1}, \ldots, \mathcal{F}_{k}\right)$ is P_{0}-Donsker provided $\phi \circ\left(f_{1}, \ldots, f_{k}\right)$ is P_{0}-square integrable for some $\left(f_{1}, \ldots, f_{k}\right)$.

* If \mathcal{F} and \mathcal{G} are P_{0}-Donsker classes and $\left\|P_{0}\right\|_{\mathcal{F} \cup \mathcal{G}}$ finite, then pairwise infima $\mathcal{F} \wedge \mathcal{G}$, pairwise suprema $\mathcal{F} \vee \mathcal{G}$, and pairwise sums $\mathcal{F}+\mathcal{G}$ are P_{0}-Donsker classes.
- For each positive constant $M_{0},\left\{f: B \subseteq \mathbb{R}^{m} \rightarrow \mathbb{R}:\|f\|_{V}^{*} \leq M_{0}, P_{0}\left(1_{B}\right)=1\right\}$ is a P_{0}-Donsker class.
* $\|c \cdot f\|_{V}^{*}=c\|f\|_{V}^{*}$ for any constant $c>0$;
* $\left\|f_{1}+f_{2}\right\|_{V}^{*} \leq\left\|f_{1}\right\|_{V}^{*}+\left\|f_{2}\right\|_{V}^{*}$;
* if f_{1} and f_{2} are bivariate cadlag functions, then $\left|\int f_{1} d f_{2}\right| \leq 16\left\|f_{1}\right\|_{V}^{*}\left\|f_{2}\right\|_{\infty}$;
* if f is bivariate, $\|f\|_{V}^{*}<\infty$, and $f>\delta>0$, then $\left\|f^{-1}\right\|_{V}^{*}<\infty$.

Seth Temple
sdtemple@uw.edu

10.3 Examples

- Donsker classes from bounded variation approach
- indicators for half-lines $(-\infty, x]$ for $x \in \mathbb{R}$;
- indicators for quarter-planes in \mathbb{R}^{2};
- univariate uniformly bounded and monotone functions;
- primitives of integrable multivariate functions;
- differentiable multivariate functions with uniformly bounded derivatives and defined over bounded region.
- Donsker implies GC
$-\mathcal{F}:=\left\{1_{(-\infty, x])}: x \in \mathbb{R}\right\}$ is Donsker and GC.
$-\mathcal{F}:=\{$ all monotone $f: \mathbb{R} \rightarrow[0,1]\}$ is Donsker and GC.
$-\mathcal{F}:=\left\{1_{A}: A \subseteq[0,1]^{3}\right.$ convex $\}$ is GC but not Donsker for any P_{0} on $[0,1]^{3}$ with bounded Lebesgue density.
$-\mathcal{F}:=\left\{1_{A}: A \subseteq \mathbb{R},|A|<\infty\right\}$ is not GC and therefore not Donsker.

11 Asymptotic Study of Estimators

We establish language and results to talk about the asymptotic properties of estimators, especially to discuss joint behavior of two or more estimators.

11.1 Definitions

- Estimator ψ_{n} of ψ_{0} based on $X_{1}, \ldots, X_{n} \sim P_{0} \in \mathcal{M}$ is said to be asymptotically linear if there is a function $x \mapsto \phi_{P_{0}}(x)$ such that

1. $\phi_{P_{0}}(X)$ is mean-zero and has finite variance;
2. $\psi_{n}-\psi_{0}=\frac{1}{n} \sum_{i=1}^{n} \phi_{P_{0}}\left(X_{i}\right)+o_{P}\left(n^{-1 / 2}\right)$, where $\phi_{P_{0}}$ is the influence function. The influence function expresses the extent to which outliers affect the estimator.

- The sandwich variance estimator in this context is

$$
\hat{\Sigma}:=\frac{1}{n} \sum_{i=1}^{n} \phi_{\hat{P}}\left(X_{i}\right) \phi_{\hat{P}}\left(X_{i}\right)^{T},
$$

where \hat{P} is a consistent estimator of P_{0}.

- A V-statistic is an estimator for some generalized moment of a distribution; namely,

$$
\begin{aligned}
V(P) & :=\int \cdots \int H\left(x_{1}, \ldots, x_{m}\right) d P\left(x_{1}\right) \ldots d P\left(x_{m}\right) \\
V_{n} & :=P_{n}^{m} H
\end{aligned}
$$

for some kernel function H. V-statistics may be biased in finite samples.

- A U-statistic is an unbiased estimator for some generalized moment of a distribution;

$$
\begin{aligned}
U_{n} & :=\binom{n}{m}^{-1} \sum_{{\underline{i_{m}} \in \mathcal{D}_{m, n}} H\left(X_{i_{1}}, \ldots, X_{i_{m}}\right)}^{\mathcal{D}_{m, n}}: \\
: & =\left\{\underline{i}_{m} \subseteq\{1, \ldots, n\}: i_{1}<\cdots<i_{m}\right\}
\end{aligned}
$$

- Let \mathcal{P} be a convex collection of distributions on \mathbb{R}. Given $F \in \mathcal{P}$, let $\mathcal{Q}(F)$ be the vector space $\left\{c\left(F_{1}-F\right): c \in \mathbb{R} ; F_{1} \in \mathcal{P}\right\}$ equipped with some norm ρ. A function $\Psi: \mathcal{P} \rightarrow \mathbb{R}$ is ρ-continuous at \tilde{F} if, for any sequence $\left\{\tilde{F}_{1}, \ldots\right\} \subseteq \mathcal{P}, \rho\left(\tilde{F}_{n}-\tilde{F}\right) \rightarrow 0$ implies $\Psi\left(\tilde{F}_{n}\right) \rightarrow \Psi(\tilde{F})$. This generalizes continuity for functionals.
- For any direction $h \in \mathcal{Q}(F)$, the Gâteaux derivative of Ψ at $F \in \mathcal{F}$ is

$$
\dot{\Psi}(F ; h):=\lim _{\epsilon \rightarrow 0}\left[\frac{\Psi(F+\epsilon h)-\Psi(F)}{\epsilon}\right]=\left.\frac{d}{d \epsilon} \Psi(F+\epsilon h)\right|_{\epsilon=0}
$$

A functional Ψ is Gâteaux differentiable at $F \in \mathcal{F}$ if $\dot{\Psi}(F ; h)$ exists for all $h \in \mathcal{Q}(F)$ and $h \mapsto \dot{\Psi}(F ; h)$ is a linear functional.

- We study first-order representations like

$$
\begin{aligned}
\Psi\left(F_{n}\right)-\Psi\left(F_{0}\right) & =\dot{\Psi}\left(F_{0} ; F_{n}-F_{0}\right)+n^{-1 / 2} R_{n} \\
R_{n} & :=R_{F_{0}, \epsilon_{n}}\left(h_{n}\right)=R_{F_{0}, n^{-1 / 2}}\left(n^{1 / 2}\left(F_{n}-F_{0}\right)\right) \\
R_{F, \epsilon} & :=\frac{\Psi(F+\epsilon h)-\Psi(F)}{\epsilon}-\dot{\Psi}(F ; h)
\end{aligned}
$$

If $R_{n}=o_{P}(1)$, we have asymptotic linearity. For this generalized asymptotic linearity of functionals, we require the above functional delta method.

- Suppose remainder term $R_{F, \epsilon}$ tends to zero uniformly for $h \in H$ and $H \in \mathcal{H}$ a collection of subsets of $\mathcal{Q}(F)$. That is, for each $H \in \mathcal{H}$,

$$
\lim _{\epsilon \rightarrow 0}\left[\sup _{h \in H}\left|R_{F, \epsilon}(h)\right|\right]=0
$$

We name different senses of uniform differentiability.

- Singleton (Gâteaux) differentiability: $\mathcal{H}=\{$ singleton subsets of $\mathcal{Q}(F)\}$
- Compact (Hadamard) differentiability: $\mathcal{H}=\{$ compacts subsets of $(\mathcal{Q}(F), \rho)\}$
- Bounded (Fréchet) differentiability: $\mathcal{H}=\{$ bounded subsets of $(\mathcal{Q}(F), \rho)\}$

11.2 Results

- Delta method for influence curves. Let ψ_{n} be an asymptotically linear estimator of $\psi_{0} \in \mathbb{R}^{p}$ with influence curve $\phi_{P_{0}}$. Suppose that h is differentiable at ψ_{0} with $h^{\prime}\left(\psi_{0}\right) \neq 0$. Then,

$$
h\left(\psi_{n}\right)-h\left(\psi_{0}\right)=\frac{1}{n} \sum_{i=1}^{n} h^{\prime}\left(\psi_{0}\right)^{T} \phi_{P_{0}}\left(X_{i}\right)+o_{P}\left(n^{-1 / 2}\right),
$$

where $x \mapsto h^{\prime}\left(\psi_{0}\right)^{T} \phi_{P_{0}}(x)$ is the new influence function.

- Delta method with a nuisance. Let $X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} P_{0}$. Consider some estimating equation $U(\psi, \eta)(x)$ such that (1) ψ_{0} is the unique solution $P_{0} U\left(\psi, \eta_{0}\right)=0$, (2) ψ_{n} is a near-solution $\left(P_{n} U\left(\psi_{n}, \eta_{n}\right)=o_{P}\left(n^{-1 / 2}\right)\right.$), and (3) η_{n} is an asymptotically linear estimator of η_{0} with influence function $\varphi_{P_{0}}$. Then, provided some further regularity conditions, ψ_{n} is an asymptotically linear estimator of ψ_{0} with influence function

$$
\phi_{P_{0}}(x):=-\left(\left.\frac{\partial}{\partial \psi} P_{0} U\left(\psi, \eta_{0}\right)\right|_{\psi=\psi_{0}}\right)^{-1}\left[U\left(\psi_{0}, \eta_{0}\right)(x)+\left.\frac{\partial}{\partial \eta} P_{0} U\left(\psi_{0}, \eta\right)\right|_{\eta=\eta_{0}} \varphi_{P_{0}}(x)\right]
$$

- Linearity of V-statistics. From a series of algebraic manipulations (see note 3), we obtain a linearization for V-statistics. That is,

$$
V_{n}-V_{0}=\sum_{k=1}^{m}\binom{m}{k}\left(P_{n}-P_{0}\right)^{k} H_{k}
$$

where $H_{k}=P_{0}^{m-k} H . m\left(H_{1}(X)-V_{0}\right)$ is the influence function when $\operatorname{Var}_{0}\left(H_{1}(X)\right) \neq 0$.

- Setting $\tau_{k}^{2}:=\operatorname{Var}_{0}\left(H_{k}\left(X_{1}, \ldots, X_{k}\right)\right)$,

$$
\operatorname{Var}_{0}\left(U_{n}\right)=\frac{a!}{n^{a}}\binom{m}{a}^{2}+O\left(n^{-(a+1)}\right)
$$

where $a:=\min \left\{k \geq 1: \tau_{k}^{2}>0\right\}$. We say U_{n} is nondegenerate if $a=1$ and degenerate of order $a-1$ otherwise. U_{n} and V_{n} are asymptotically equivalent under nondegeneracy.

- Bounded implies compact implies singleton differentiability.
- Remainder $R_{n}=o_{P}(1)$ if either Ψ is compact differentiable at F_{0} relative to the supremum norm or Ψ is bounded differentiable w.r.t. some ρ and $\rho\left(F_{n}-F_{0}\right)=O_{P}\left(n^{-1 / 2}\right)$.
- $\left(P_{n}-P_{0}\right) f=P_{n} f-P_{0} f=P_{n} f-P_{n} P_{0} f=P_{n}\left(f-P_{0} f\right)$. This may be a term in an influence function after expanding terms with the \pm trick.

Seth Temple
sdtemple@uw.edu

11.3 Examples

- Asymptotically linear estimators
- Sample mean
- Sample variance
- Estimating equation-based estimator
- Sample quantile
- Sample coefficient of variation
- Average absolute deviation from mean
- Inverse-probability-weighted estimator (for missing data)
- U, V-statistics
- V-statistics
- Variance
- Kendall's tau
- Cramer-von Mises goodness of fit
- Wilcoxon signed rank statistic (vdV 12.4)
- Mann-Whitney statistic (vdV 12.7)
- Numerator of AUROC (Homework 2 Problem 1)
- Functional differentiation
- Raw moment functional
- Variance functional
- Convolution functional

12 Efficiency Theory

We develop a general theory to study when asymptotically linear estimators achieve the lowest possible asymptotic variance. This extends the observation of Charles Stein that estimation in a large model \mathcal{M} ought to be no easier than estimation in 1-dimensional parametric models. (Recall (Hájek's) convolution theorem from Chapter 5 on optimal estimators.)

12.1 Definitions

- The (Fisher) information that parameter θ provides is

$$
\mathcal{J}(\theta):=P_{\theta}\left(\left[\frac{\partial}{\partial \theta} \log p_{\theta}\right]^{2}\right)
$$

This measures the curvature of the log-likelihood surface. Curvier surfaces have more definition to learn from.

- A generalized Cramér-Rao (GCR) lower bound depends on the information and pathwise derivatives with respect to sufficiently smooth models indexed by θ and passing through origin $\theta=0$.

$$
\sigma_{0}^{2} \geq \sup _{h \in \mathcal{H}} \frac{\left[\left.\frac{\partial}{\partial \theta} \Psi\left(P_{\theta, h}\right)\right|_{\theta=0}\right]^{2}}{\mathcal{J}_{\mathcal{M}_{h}}(0)}
$$

- Scores $h \in \mathcal{H}(P)$ are defined (rigorously) with respect to quadratic mean differentiability (Chapter 3). Heuristically, if $p_{\theta, h}=[1+\theta h(x)] p(x)$ is sufficiently smooth, h is the derivative of the log density at $\theta=0$.
- The space $L_{2}^{0}(P)$ is the collection of real-valued functions f with $P f=0$ and $P\left(f^{2}\right)<\infty$ and endowed with the covariance inner product $\left\langle f_{1}, f_{2}\right\rangle_{P}$. This is a Hilbert space.
- A (real) Hilbert space is a vector space equipped with an inner product and complete (in the Cauchy sense) relative to norm $\|h\|:=\langle h, h\rangle^{1 / 2}$. Some other properties are:
- (Cauchy-Schwarz) $\left|\left\langle h_{1}, h_{2}\right\rangle\right|^{2} \leq\left\|h_{1}\right\| \cdot\left\|h_{2}\right\|$
$-\left\langle h_{1}, h_{2}\right\rangle=0$ implies orthogonality
- Orthogonal complement \mathcal{H}_{0}^{\perp} of subspace \mathcal{H}_{0} is $\left\{h \in \mathcal{H}:\left\langle h, h_{0}\right\rangle=0, \forall h_{0} \in \mathcal{H}_{0}\right\}$
- Projection of $h \in \mathcal{H}$ onto \mathcal{H}_{*}, denoted $\Pi\left[h \mid \mathcal{H}_{*}\right]$, is the unique element $h_{*} \in \mathcal{H}_{*}$ s.t.

$$
\left\|h-h_{*}\right\|=\min \left\{\|h-h\|: h \in \mathcal{H}_{*}\right\}
$$

Residual $h-h_{*}$ is orthogonal to \mathcal{H}_{*}, i.e. orthogonal to any $h_{*} \in \mathcal{H}_{*}$.

- If $\mathcal{H}_{0}=\mathcal{H}_{1} \oplus \mathcal{H}_{2}$, then $\Pi\left[\cdot \mid \mathcal{H}_{0}\right]=\Pi\left[\cdot \mid \mathcal{H}_{1}\right]+\Pi\left[\cdot \mid \mathcal{H}_{2}\right]$
- Given any closed subspace $\mathcal{H}_{0}, \mathcal{H}$ can be expressed as $\mathcal{H}_{0} \oplus \mathcal{H}_{0}^{\perp}$. As well, any $h \in \mathcal{H}$ can be uniquely decomposed into $h_{0}+h_{0}^{\perp}$.
- If $\mathcal{H}_{f}:=\{c f: c \in \mathbb{R}\}$ for some $f \in \mathcal{H}$, then $\Pi\left[h \mid \mathcal{H}_{f}\right]=\frac{\langle h, f\rangle}{\langle f, f\rangle} f$ for any $h \in \mathcal{H}$.
- (Riesz representation) If ϕ is a bounded linear functional, there exists a unique element $h_{0} \in \mathcal{H}$ s.t. $\phi(h)=\left\langle h, h_{0}\right\rangle$ for each $h \in \mathcal{H}$. This representation offers the existence of a gradient.
- The tangent set of model \mathcal{M} at P is the set of (QMD) scores $h \in L_{2}^{0}(P)$ for some smooth 1-dim submodel indexed by θ that goes through the origin P at $\theta=0$.
- Tangent space, denoted $\mathcal{T}_{\mathcal{M}}(P)$, is the additive and limit closure of the tangent set. Note that $\mathcal{T}_{\mathcal{M}}(P) \subseteq L_{2}^{0}(P)$. Models are defined as nonparametric, semiparametric, and parametric according to the tangent space.
- Nonparametric: at each P the tangent space $\mathcal{T}_{\mathcal{M}}(P)=L_{2}^{0}(P)$
- Parametric: if $\mathcal{T}_{\mathcal{M}}(P)$ is finite-dimensional at each $P \in \mathcal{M}$
- Semiparametric: otherwise
- A summary of interest $\Psi: \mathcal{M} \rightarrow \mathbb{R}$ is pathwise differentiable at $P \in \mathcal{M}$ if there is a continuous linear map $\dot{\Psi}_{P}: L_{2}^{0}(P) \rightarrow \mathbb{R}$ s.t. for every $h \in \mathcal{T}_{\mathcal{M}}(P)$

$$
\dot{\Psi}_{P}(h):=\left.\frac{\partial}{\partial \theta} \Psi\left(P_{\theta, h}\right)\right|_{\theta=0}
$$

For each (regular) 1-dim parametric submodel $\left\{P_{\theta, h}: \theta \in \Theta\right\}$ through P the pathwise derivative at $\theta=0$ only depends on the score h.

- An element $D(P) \in L_{2}^{0}(P)$ is a gradient of Ψ at P relative to \mathcal{M} if for each $h \in \mathcal{T}_{\mathcal{M}}(P)$

$$
\dot{\Psi}_{P}(h)=\langle D(P), h\rangle_{P}
$$

Given some gradient $D_{0}(P)$, the set of gradients can be represented as

$$
\left.\mathcal{G}_{\mathcal{M}}(P):=\left\{D_{0}(P)+q(P): q(P) \in \mathcal{T}_{\mathcal{M}}(P)^{\perp}\right)\right\}
$$

The canonical gradient is the unique gradient $D^{*}(P)$ that lives in tangent space $\mathcal{T}_{\mathcal{M}}(P)$. To find a gradient:

1. Formulate smooth 1-dim submodel, say $p_{\theta, h}(x)=[1+\theta h(x)] p(x)$
2. Compute pathwise derivative using calculus
3. Write pathwise derivative as $\langle D(P) h\rangle_{P}$ for score h
4. Recenter $D(P)$ to be mean-zero

12.2 Results

- Gradients in nested models. If $\mathcal{M}_{1} \subseteq \mathcal{M}_{2}$, then $\mathcal{G}_{\mathcal{M}_{2}}(P) \subseteq \mathcal{G}_{\mathcal{M}_{1}}(P)$. Pathwise derivatives are harder (there are less of them) when the model is larger.
- Influence functions are gradients. Suppose ψ_{n} is an asymptotically linear estimator of $\psi_{0}:=\Psi\left(P_{0}\right)$ with influence function $\phi_{P_{0}}$. TFAE: (i) Ψ is pathwise differentiable at P_{0} and $\phi_{P_{0}}$ is a gradient, and (ii) ψ_{n} is regular at P_{0}.
- Gradients are influence functions. Under sufficient regularity, for a gradient $D\left(P_{0}\right)$, TFAE: (i) an asymptotically linear estimator of ψ_{0} exists with influence function $D\left(P_{0}\right)$, and (ii) it is possible to estimate $D\left(P_{0}\right)$ consistently. This implies that we can find the influence function of an asymptotically linear estimator by computing a gradient.
- Canonical gradient is the efficient influence function. A RAL estimator ψ_{n} of ψ_{0} is efficient if and only if

$$
\psi_{n}-\psi_{0}=P_{n}\left(D^{*}\left(P_{0}\right)\right)+o_{P}\left(n^{-1 / 2}\right)
$$

where $D^{*}\left(P_{0}\right)$ is the canonical gradient. This is established by looking at the GCR lower bound. We may refer to $P_{0}\left(D^{*}\left(P_{0}\right)^{2}\right)$ as the efficient bound.

12.3 Examples

- Simple 1-dim submodels
$-p_{\theta, h}(x):=[1+\theta h(x)] p(x)$
$-p_{\theta, h}(x):=\exp (\theta h(x)) p(x) / c_{h}(\theta)$ where $c_{h}(\theta)$ is normalizing constant
$-p_{\theta, h}(x):=\operatorname{expit}(2 \theta h(x)) p(x) / c_{h}(\theta)$ where $c_{h}(\theta)$ is normalizing constant
First approach usually suffices to compute a gradient. Third approach does not require bounded h.
- Tangent spaces
- Nonparametric model \mathcal{M}_{μ} for all d-variate distributions dominated by measure μ
- For bivariate $\mathcal{M}:=\mathcal{M}_{Z} \oplus \mathcal{M}_{Y \mid Z}$ tangent space decomposes

$$
\mathcal{T}_{\mathcal{M}}(P)=\mathcal{T}_{\mathcal{M}_{Z}}(P) \oplus \mathcal{T}_{\mathcal{M}_{Y \mid Z}}(P)
$$

For bivariate independence model, Y independent of Z,

$$
\mathcal{T}_{\mathcal{M}}(P)=\mathcal{T}_{\mathcal{M}_{Z}}(P) \oplus \mathcal{T}_{\mathcal{M}_{Y}}(P)
$$

See projections onto this tangent space in Note 5. Projections are verified by checking orthogonality of residuals.

- Parametric $\mathcal{M}:=\left\{P_{\beta}: \beta \in B\right\}$ for some open, convex set $B \subseteq \mathbb{R}^{p}$.

$$
\mathcal{T}_{\mathcal{M}}(P):=\left\{\left.x \mapsto u \cdot \frac{\partial}{\partial \beta} \log p_{\beta}(x)\right|_{\beta=\beta_{0}}: u \in \mathbb{R}^{p}\right\}
$$

See projections onto this tangent space in Note 5. Projections are verified by checking orthogonality of residuals.

- A model with moment condition $P g_{0}=0$ for some g_{0}

$$
\mathcal{T}_{\mathcal{M}}(P)=\left\{h \in L_{2}^{0}(P): \int g_{0}(x) h(x) d P(x)=0\right\}
$$

See Homework 4 Problem 1 for more details on estimating $\psi_{0}=P f_{0}$ for some f_{0}. This is an example in which the moment condition restricts the tangent space.

- A model for some symmetric distribution about some center/origin

$$
\begin{aligned}
\mathcal{T}_{\mathcal{M}}\left(P_{\mu, f}\right) & =\mathcal{T}_{1}\left(P_{\mu, f}\right) \oplus T_{2}\left(P_{\mu, f}\right) \\
\mathcal{T}_{1}\left(P_{\mu, f}\right) & :=\{x \mapsto a \dot{f}(x-\mu) / f(x-\mu): a \in \mathbb{R}\} \\
\mathcal{T}_{2}\left(P_{\mu, f}\right) & :=\left\{x \mapsto h(x-\mu): h \in \mathcal{H}\left(P_{0, f}\right)\right\}
\end{aligned}
$$

See Homework 4 Problem 2 for more details on estimating the center μ_{0}. This is a scenario in which exact knowledge about say f_{0} does not impact efficiency bound.

- Gradients
- Homework 4 Problem 1(c)
- Homework 4 Problem 2(b)
- General moment $\Psi(P):=P f_{0}$ leads to $D(P): x \mapsto f_{0}(x)-P f_{0}$
- Average density value $\Psi(P):=\int[f(x)]^{2} d x=P f$ leads to $D(P): x \mapsto 2[f(x)-P f]$ after some calculus work
- Conditional mean value $\Psi(P):=\mathbb{E}\left[Y \mid Z=z_{0}\right]$

$$
D\left(P_{0}\right):(z, y) \mapsto \frac{I\left(Z=z_{0}\right)}{P_{0}\left(Z=z_{0}\right)}\left[y-\Psi\left(P_{0}\right)\right]
$$

See Note 6 for detail derivations. There is involved calculus work here.

Miscellaneous

- Differentiability in higher dimensions. Below are two representations of differentiability at ψ_{0}. The first representation is especially useful for proving delta methods. For all $\varepsilon>0$,

$$
\begin{gathered}
\lim _{\varepsilon \rightarrow 0} \sup _{\|h\|=1} \frac{\left|f\left(\psi_{0}+\varepsilon h\right)-f(\psi)-\varepsilon\left\langle h, \nabla f\left(\psi_{0}\right)\right\rangle\right|}{\varepsilon} \rightarrow 0 ; \\
\lim _{h \rightarrow 0} \frac{\left\|f\left(\psi_{0}+h\right)-f(\psi)-J_{f}(h)\right\|}{\|h\|} \rightarrow 0
\end{gathered}
$$

Read more about the second representation at the Wikipedia article for differentiable functions in higher dimensions. A sufficient condition for differentiability is that partial derivatives exist and the linear map J_{f} is the Jacobian matrix. In class, we claim this sufficient condition as that f is partially differentiable in a neighborhood around ψ_{0} and the partial derivatives are continuous at ψ_{0}. Lastly, note that h in the two representations are different!

- Find a Lipschitz constant by finding the maximum of the norm of the gradient.
- Mean value theorem. For a function continuous on $[a, b]$ and differentiable on (a, b) there is some c in the open interval such that the tangent line $f^{\prime}(c)$ equals the secant line connecting a and b.
- Extreme value theorem. A continuous function on a closed interval attains its maximum and minimum values. With this result, we may assert that an extremum is at least attained.
- Fundamental theorems of calculus. These results link derivatives with integrals.

$$
\begin{gathered}
f(b)-f(a)=\int_{a}^{b} f^{\prime}(x) d x \\
f(x)=\int_{a}^{x} f(t) d t \Longrightarrow f^{\prime}(x)=f(x)
\end{gathered}
$$

- Taylor series. We approximate differentiable functions by the following and the remainder vanishes in the asymptote.

$$
f(x)=\frac{f^{(0)}(a)}{0!}(x-a)^{0}+\frac{f^{(1)}(a)}{1!}(x-a)^{1}+\frac{f^{(2)}(a)}{2!}(x-a)^{2}+\text { remainder }
$$

- Lagrange remainder. Combining Taylor series with the mean value theorem we arrive at an alternative representation for ℓ-differentiable functions.

$$
f(x)=\frac{f^{(0)}(a)}{0!}(x-a)^{0}+\frac{f^{(1)}(a)}{1!}(x-a)^{1}+\cdots+\frac{f^{(\ell-1)}(a)}{(\ell-1)!}(x-a)^{\ell-1}+\frac{f^{(\ell)}\left(\tilde{x}_{a}\right)}{\ell!}\left(\tilde{x}_{a}\right)^{\ell}
$$

Here \tilde{x}_{a} is some point in the interval between x and a. Final term is Lagrange remainder.

- Properties of convex functions.

$-f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)$ for $t \in[0,1]$.

- With differentiability added, the function is continuously differentiable.
- Differentiable on an $[a, b]$ implies the derivative is nondecreasing on $[a, b]$.
- Differentiable on $[a, b]$ implies

$$
f(x) \geq f(y)+f^{\prime}(y)(x-y) \quad x, y \in[a, b]
$$

- Convex hull. $\operatorname{conv}(\mathcal{F}):=\cup_{k=1}^{\infty}\left\{x \mapsto \sum_{j=1}^{k} \alpha_{j} f_{j}(x): \min _{j} \alpha_{j} \geq 0, \sum_{j=1}^{k} \alpha_{j}=1\right\}$
- Use this equality $\inf \left(-x_{n}\right)=-\sup x_{n}$ to redefine the $X_{n}=O_{P}\left(R_{n}\right)$ notation.
- $1+x \leq e^{x}$ is a useful upper bound inequality to convert to an exponential argument.
- $\log (1+x) \leq x$ for $x \geq 0$ is a useful upper bound inequality to convert to.
- $\left(e^{x}-x-1\right) / x^{2}$ is a nondecreasing function.
- Some useful Taylor series

$$
\begin{aligned}
& -e^{x}=1+\frac{x^{1}}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots \\
& -\log (1+x)=0+\frac{x^{1}}{1!}-\frac{x^{2}}{2!}+\frac{x^{3}}{3!}-\frac{x^{4}}{4!} \pm \ldots \\
& -\frac{1}{1-x}=1+x^{1}+x^{2}+x^{3}+\ldots
\end{aligned}
$$

- Reverse triangle inequality.

$$
\left|\|x\|_{2}-\|y\|_{2}\right| \leq\|x-y\|_{2}
$$

- We say that X is stochastically larger than Y if $P(X \leq x) \leq P(Y \leq x)$.
- See this for functions of bounded variation and how to (Jordan) decompose such.
- For concave functions, the inequality sign in Jensen's switches.
- $(y-a)^{2}-(y-b)^{2}=(a-b)(a+b-2 y)$ we use studying $\operatorname{Reg}(\hat{\theta})$ for squared loss.
- Symbol \asymp refers to order of magnitude.
- Symbol \lesssim refers to \leq up to constants.
- Tight bound $\Theta(\cdot)$ is explained here.
- $\operatorname{vol}\left(B^{d}(0, \epsilon)\right) \leq(\epsilon / r)^{d} \operatorname{vol}\left(B^{d}(0, r)\right)$
- Bolzano-Weierstrass. Every bounded sequence has a convergent subsequence.
- Semi-continuity. See graphs under Examples.
- A function f is lower-semicontinuous at x_{0} if for all $\varepsilon>0$ there is a neighborhood around x_{0} such that $f(x) \geq f\left(x_{0}\right)-\varepsilon$
- A function f is upper-semicontinuous at x_{0} if for all $\varepsilon>0$ there is a neighborhood around x_{0} such that $f(x) \leq f\left(x_{0}\right)+\varepsilon$.
- Fisher-Cramér. This result from MDP's STAT 513 says that the MLE is asymptotically consistant and normal if we have a regularity condition the depends of first and second derivatives of the log likelihood. Important estimators like medians may not fit into this framework. We weaken this assumption using QMD.

- Binomial theorem.

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

