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 Preface

 This monograph is based primarily on material presented at the CBMS Summer

 Course on Inferences from genetic data on pedigrees given at Michigan
 Technical University, Hougton, Michigan, in July 1999. This monograph is not
 a textbook; it contains no exercises, and is insufficiently detailed for that purpose.
 However, it could be used as a textbook, either in conjunction with the excellent

 texts of Weir (1996), Lange (1997) and Ott (1999), or by advanced students who
 will consult the cited literature for details.

 The notes used at the Summer Course have been augmented by material from

 two lecture classes given at the University of Washington. A Special Topics class
 was given in January-March, 1999, and additional background on Markov chain
 Monte Carlo and Monte Carlo EM are included from that class. Some details
 were also first presented at a SEMSTAT workshop in Eindhoven in March 1999
 (Thompson, 2000b). Although material has been added, the examples in Chapter 10
 and on identity by descent under interference (section 11.2) were first presented at
 a Royal Statistical Society Meeting in London, in March 1999 (Thompson, 2000a).
 Versions of Figures 9.1, 10.1, 10.2, 10.6, and 10.7 first appeared in Thompson
 (2000a). However, the 11-chapter monograph follows closely the ten sessions of the
 Summer Course presentations, with chapter 2 being the only addition, providing
 statistical background with genetic examples. The order of Chapters 8 and 9 has

 been reversed from the Summer Course; a case can be made for either ordering.
 A more basic Statistical Genetics class was given in Fall 1999, at University of

 Washington, and led to extensive revision of Chapters 1-4. It is hoped that the
 monograph can thus serve two purposes. For example, a more introductory course
 could cover of Chapters 1-4, with final material taken from sections 6.1, 6.2, 7.1,
 and 7.2. More advanced students could skip Chapters 1-2, skim Chapters 3-5, and
 study the later chapters more thoroughly.

 I would like to thank Dr.Anant Godbole and Dr.JianPing Dong, for their
 excellent organization of the CBMS Regional Research Conference at Michigan
 Technical University. I am also grateful to the many students who attended this
 course, and to students attending the two University of Washington courses, for

 their helpful comments and criticisms. In particular, I would like to thank Eric
 Anderson, Nicky Chapman and Dr.Ellen Wijsman for help with LaTeX, BibTeX,
 Xfig, and GENEHUNTER, and for many discussions. I am grateful to Amy
 Anderson for her thorough and critical reading of Chapters 1 to 5, and to Eric
 Anderson, Dr.Erin Conlon, Dr.Mary Kuhner, Anne-Louise Leutenegger, and Jessica

 xi
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 xii PREFACE

 Maia, who all read and commented on other chapters.

 Some of the MCMC work was undertaken in collaboration with Dr.Simon Heath.

 In particular, the implementation of the algorithm described in section 3.6 and the

 initial incorporation of the L-sampler of Heath (1997) into our M-sampler software

 to create the LM-sampler (section 10.6) are both due to Dr.Heath. Figures 1.1, 1.2,

 3.4, 3.5, and 10.3, first appeared in Thompson and Heath (1999), and are also due

 to Dr.Heath. I am grateful to Dr.Heath for our continuing collaboration.
 The CBMS Regional Research Conference was funded by NSF grant number 98-

 13767 to Dr.Jianping Dong and Dr.Anant Godbole of The Mathematical Sciences

 Department of Michigan Technical University, Houghton, MI.
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 xiii

 Table of Notation

 Since there are an insufficient number of user-friendly letters and symbols, some

 must be used for more than one purpose. However, for convenience, we summarize
 the principal usages here

 Notation Usage

 Parameters

 0 the general (set of) parameters of a model

 p a recombination frequency parameter

 a (trait) locus location

 FM a marker map; set of arker locations

 /3 a trait model penetrance parameter

 r number of multinomial outcomes (or phenotypes)

 P1, , Pr probabilities of multinomial outcomes
 k number of alleles at a locus

 q1, , qk population allele frequencies at this locus
 q an allele frequency, often for a recessive allele

 a kinship coefficient

 chiasmata avoidance function

 ri, i = 0,1, 2 gene-identity probabilities
 Indices and labels

 i an index used primarily for individuals or meioses

 j an index used primarily for alleles or loci

 k, ki a label for a gene
 L a number of loci ordered on a chromosome

 m a count, often of the number of meioses
 v miscellaneous other counts, of genes for example

 n sample size

 F father, or paternal, often as subscript

 M mother, or maternal, often as subscript

 also marker, as in marker data YM

 N Monte Carlo sample size

 also (Chapter 5) the random number of chiasmata)
 T an index of Monte Carlo or MCMC realizations
 T a set of indices of latent variables
 D a set of indices of data observations

 Variables

 A1, ..., Ak the alleles at a locus
 Y, value y the data random variables (usually phenotypes)

 YM phenotypes at marker loci, in linkage mapping
 YT trait phenotypes; Y = (YT, YM)
 X, value x latent variables

 Xt a proposed value of X in Monte Carlo sampling
 X* a sampled or resampled value of X in Monte Carlo

 G = {Gi} the set of genotypes of individuals i
 g a genotype a possible value of Gi
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 xiv NOTATION

 Notation Usage

 Variables continued

 S = {Si } set of meiosis indicators for meioses i and loci j
 S.,J the vector of Sij at given locus j
 Si,. the vector of Sij at given meiosis i
 G.,j, Gi,. similarly for genotypes, locus j, individual i
 Y.,j, Yi,. similarly for phenotypes, locus j, individual i
 y(i) the data {Y.,1,Y.,2,. .. ,Y.,j}; y = y(L)
 J = J(S) a gene ibd pattern, a function of S

 II, ,IL-1 the intervals between L ordered loci
 R = (Rj; j = 1, ..., L-1) the recombination indicators in intervals Ij
 r a vector of recombination indices; value of R
 C = (Cj; j = 1,,L - 1) the chiasmata presence/absence indicators in

 intervals Ij
 c a vector of chiasma indices; value of C
 T, value t a count (often binomial)
 t. a multinomial count, e.g. of latent genotypes;

 also (Chapter 5) a set of binary indicators

 njri, n3 multinomial data counts, of observable phenotypes
 or genotypes

 rni multinomial counts, often of alleles
 Functions and probabilities

 Pr probability, when not indexed by a parameter
 Pr(E; 0) probability of event E under model 0
 PO ) a probability distribution, indexed by 0
 P* (0) a probability distribution, used for the sampling or

 resampling distribution in Monte Carlo methods
 Eo(.) Expectation, under a model indexed by 0
 lb ) the standard Normal (Gaussian) cumulative

 distribution function

 I(.) the indicator function of an event
 L(0) or Ly(0) the likelihood for parameter 0 given data y
 L(0; Y) the likelihood function, considered also as a

 function of data random variables Y
 e or t(9) the log-likelihood function for parameter 0
 Kn(0; 00) Kullback-Leibler information in a sample size n
 Ky(0; So) K-L information in latent X given data y
 Hy (0; 9o) expected complete-data log-likelihood given

 Y = y: Eoo(logPo(X,Y) I Y = y)
 R(.) and R* (.) cumulative probabilities of data used in computing

 probabilities on graphs or pedigrees
 Q(.) Q*(.), Qt(.) cumulative conditional probabilities of latent

 variables given data on graphs or pedigrees
 h(Xt; X) Hastings ratio for proposed Xt when at state X
 q(Xt; X) proposal probability for Xt when at state X
 a the Metropolis-Hastings acceptance probability
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 Chapter 1

 Genes, Pedigrees and

 Genetic Models

 1.1 DNA, alleles, loci, genotypes, and phenotypes

 The DNA in the nuclei of cells of an individual consists of about 3 x 109 base

 pairs (bp). This DNA is packaged into chromosomes each of which has a linear
 DNA sequence in a twisted double-helical structure. There are 46 chromosomes

 in the nucleus of each normal human cell, 22 pairs of autosomes and a pair of sex
 chromosomes. Of the two chromosomes of a pair, one derives from the DNA of
 the mother of the individual and the other derives from the DNA of the father. In

 this book, we will restrict attention to the autosomes, which contain the majority
 of the DNA coding for the proteins and affecting the characteristics of individuals.

 Similar approaches would apply to the sex chromosomes, but the details differ.
 There is additional DNA in the mitochondria, which are located in the cytoplasm
 of the cell; mitochondrial DNA is maternally inherited.

 Any small segment of the DNA of the chromosome is known as a locus. Typically,
 a locus used to refer to the segment of DNA coding for some functional protein, but
 it is now used to refer to any position characterized by a specific DNA sequence,
 or by specific forms of variation in the sequence. These loci exhibiting observable
 variation in the DNA are DNA marker loci, and a locus simply indicates a particular
 position on a particular one of the pairs of chromosomes. The DNA at a locus may
 come in a variety of forms, or alleles. Any individual has two chromosomes of a
 given pair, and thus has two (possibly identical) alleles at each locus. The unordered
 pairs of alleles that an individual has is the individual's genotype at this locus. If
 the locus is one relating to a functional gene, the resulting potentially observable
 characteristic of the individual is the phenotype. A locus exhibiting non-negligible
 variation in a population is known as a polymorphism, or the locus is said to be

 polymorphic. Classically, the frequency of the the most frequent genotype should

 1
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 2 CHAPTER 1. GENES, PEDIGREES AND GENETIC MODELS

 be less than 99% for a locus to qualify as a polymorphism.

 For example, the DNA which codes for the antigens that determine an
 individual's ABO blood type is at a certain position on Chromosome 9. This

 is a chromosome in mid-range size; chromosomes are numbered in approximately
 decreasing size order. This position is the ABO locus. There are three major
 alleles at the human ABO locus, A, B, and 0, although these allelic types can

 be subdivided. The ABO locus is polymorphic in almost every human population.
 There are thus six genotypes; AA, AO, BB, BO, 00, and AB. However there are

 only four phenotypes (ABO blood types), type-A, type-B, type-O and type-AB.
 Individuals with genotype AA or AO have type-A blood type; individuals with
 genotype BB or BO have type-B blood type. For each of the phenotypes 0 and
 AB, there is a single corresponding genotype.

 A genotype for which the two alleles are the same, such as AA, BB or 00

 are known as the homozygous genotypes. The individual is a homozygote or is

 homozygous at this locus. Where the two alleles are different (AO, BO or AB), the
 individual is a heterozygote or is heterozygous at this locus. Where a heterozygous
 genotype exhibits the same phenotype as one of the two homozygotes, the allele

 carried by this homozygote is said to be dominant to the other allele. At the ABO

 blood type locus, for example, individuals of genotype BO have type-B blood. The

 B allele is dominant to the 0 allele; the 0 allele is recessive to the B allele. Likewise,
 the A allele is dominant to the 0 allele; the 0 allele is recessive to the A allele.

 Individuals of genotype AB have type-AB blood, distinct from the phenotypes of
 both the AA (type-A) and BB (type-B) genotypes. The alleles A and B are said
 to be codominant.

 Initially, genetic markers used in genetic analysis were blood type or enzyme

 markers such as the ABO locus. The first DNA markers were restriction fragment
 polymorphisms or RFLPs (Botstein et al., 1980). These often had several alleles,
 or at least two alleles with substantial frequency. These were followed by current

 microsatellite markers, where alleles correspond to different numbers of tandem
 repeats of a small number (2, 3, or 4) of base pairs. Microsatellite markers are often
 highly polymorphic, with 10 or more alleles observed with non-negligible frequency
 in any given population. These have become the markers of choice for genetic

 mapping, but statistically have several disadvantages all due to the high degree of

 polymorphism. Mutation rates at some microsatellite markers are high, and typing
 errors also more frequent. Accurate estimation of population allele frequencies
 is harder, and inferences can be sensitive to allele frequency assumptions. The

 newest DNA markers are single-nucleotide polymorphisms or SNPs. These measure
 variation at a single base of DNA. Although there are many SNPs in the human

 genome, perhaps as many as 1 per 500 bp, or several million in total, most have only
 two alleles. In the future, genetic mapping analyses may be based on a much larger

 number of much less informative markers with consequent additional challenges.
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 1.2. MENDEL'S LAWS AND MEIOSIS INDICATORS 3

 1.2 Mendel's laws and meiosis indicators

 Mendel's First Law (1866) states that each individual has two "factors" (or genes)
 controlling a given characteristic, one being a copy of a corresponding gene in the
 father of the individual, the other a copy of a gene in the mother of the individual.
 Further, a copy of a randomly chosen one of the two is copied to each child,
 independently for different children and independently of genes contributed by the
 spouse. The probabilistic process of the random choice of genes to be copied is
 known as Mendelian segregation. The biological process forming the chromosomes of
 the gamete (sperm or egg) cell is known as meiosis At a single locus, the segregation
 of genes is fully specified by meiosis indicators

 Si = 0 if copied gene is parent's maternal gene

 (1.1) = 1 if copied gene is parent's paternal gene

 where i = 1, ..., m indexes the meioses (parent-child links) in the pedigree. Mendel's
 First Law then simply states that the indicators Si are independent, and

 1
 Pr(Si = 0) = Pr(Si = 1) =

 For multiple loci, j, j = 1,... ,L, we must specify the segregation of genes at
 each locus:

 Si,j = 0 if copied gene at meiosis i locus j is parent's maternal gene

 (1.2) = 1 if copied gene at meiosis i locus j is parent's paternal gene.

 Contrary to Mendel's second law (Mendel, 1866), which in effect stated that Sij
 are independent for different loci j, the segregation of alleles at loci on the same

 chromosome are dependent. The collection of alleles at loci on a chromosome in

 the maternal [paternal] gamete, is the maternal [paternal] haplotype of the offspring
 individual.

 The word "gene" is overused in modern genetics, often referring to the locus (as
 in "the ABO gene"), or to an allele predisposing the individual to a particular
 disease or trait (as in "the cystic fibrosis gene"). Here we reserve the word
 "gene" for Mendel's original "factors"; the gene is the entity transmitted from

 parent to offspring. The meiosis indicators Sij have also attracted a variety of
 names and notations. Karlin and Liberman (1979) used them in the theoretical
 analysis of meiosis patterns at loci on a chromosome (Chapter 5). Their first use
 in the computation of probabilities of gene descent in pedigrees is due to Donnelly

 (1983), who called them switches. Thompson (1994c) retained the notation of
 Donnelly (1983), but called them segregation indicators. Lander and Green (1987)
 use the phrase inheritance vectors while Sobel and Lange (1996) use descent
 graphs. Together with a defined pedigree structure, the meiosis indicators do indeed
 determine the inheritance or descent patterns of genes in a pedigree (section 3.6).
 However, in considering the indicators alone we prefer the name meiosis indicators.
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 4 CHAPTER 1. GENES, PEDIGREES AND GENETIC MODELS

 For later convenience we define the following notation

 S.,j = {Si,j;i= 1,...,m}, j = 1,...,L

 (1.3) Si,. = {Sj,j;j=1,...,L}, i=1,...,m

 where m is the number of meioses in the pedigree, and L the number of loci along the
 chromosome. The m vectors Si,. are a priori independent, but the components S,j
 are dependent. The pattern of dependence depends on the process of meiosis, which
 will be considered further in Chapter 5. However, under (untrue) assumptions of
 absence of genetic interference in meiosis, there is a simple conditional independence
 structure. Suppose the loci are ordered 1, . .. , L along a chromosome. Then given

 SiJ, (Si,1, . . ., S,j_l) is independent of (Si,j+l, . . ., Si,L). Or, (Si,j) is first-order
 Markov over j.

 1.3 Pedigrees: the conditional independence

 structure

 A pedigree is a specification of the genealogical relationships among a set of
 individuals. A convenient form of this specification is to identify the father and
 the mother of each individual. Individuals at the top of the pedigree, whose
 parents are unspecified, are the founders of the pedigree; other individuals are
 non-founders. Individuals in the pedigree, and without offspring, are referred to
 as final individuals; unless there are data on such an individual, he contributes no
 information. Relationships among individuals are defined relative to the specified
 pedigree; thus, by definition, the founders are unrelated.

 The pedigree of Figure 1.1 will be used extensively in examples throughout

 this book. It is a true pedigree structure, and derives from a study of Werner's
 syndrome, a rare recessive trait (Goddard et al., 1996). The pedigree has five
 founders and ten non-founders. In accordance with standard notation, male
 individuals are shown as squares, and females as circles. The form in which the
 pedigree is shown here is a marriage node graph. Individuals who together produce
 offspring are connected to a single marriage node, which is in turn connected to
 the resulting offspring. This pedigree was ascertained because the final individual
 was known to be the offspring of a first-cousin marriage, and was affected by a
 rare recessive trait. Typically affectation status for a trait of interest is depicted
 by shading, as in Figure 1.1. It was later discovered that each of the parents of the
 final individual is also the offspring of a marriage between first cousins.

 The meiosis indicators determine the descent of genes in a pedigree. Figure 1.2
 gives an example, using the pedigree of Figure 1.1. The meiosis indicators shown

 under each individual are for the paternal and maternal meiosis to that individual.
 For easier visualization males and paternal meioses or genes are shown to the left,
 and females and maternal meioses and genes to the right. For example it is seen
 that the paternal gene of the final individual is the same gene (labeled "8") as
 the maternal gene of his maternal grandfather. The gene does not descend from
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 1.3. PEDIGREES: THE CONDITIONAL INDEPENDENCE STRUCTURE 5

 FIGURE 1.1. An example pedigree from Goddard et al. (1996)

 grandparent to grandchild (the mother does not carry this gene), but both are
 copies of the same founder gene.

 The meiosis indicators S determine the descent of founder genes. Together
 with the allelic type of each founder gene at each locus (the founder haplotypes),
 S determines the complete configuration of genotypes G on the pedigree. The
 independence of meioses then leads to a straightforward conditional independence
 structure for genotypes on a pedigree. Individuals receive copies of their parents'
 genes, and, together with their spouses, segregate genes to their offspring.

 This conditional independence leads to one formulation of the probability of
 phenotypic data Y observed on a pedigree. The probability of the genotypes G -

 {Gi} is

 (1.4) Pr(G) = I Pr(Gi) fJ Pr(GiIGMiIGFJ)
 founders i nonfounders i

 where Gi is the genotype of individual i, and Mi and Fi are the parents of individual
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 6 CHAPTER 1. GENES, PEDIGREES AND GENETIC MODELS

 ill1 110 0X 1? 0

 111 110 ?1? , 110

 <1t

 FIGURE 1.2. Meiosis indicators S.,j determine descent of founder genes, at any given locus j.
 The indicators S,j are shown under the offspring individual, while the resulting labeled founder
 genes are shown within each individual

 i. The data on individuals are determined by their underlying genotypes:

 (1.5) Pr(Y) = E ( II Pr(Yj I Gi)) Pr(G)
 G observed i

 The genotype Gi of individual i is the multilocus genotype: that is, a pair
 of haplotypes over all the relevant genetic loci. The phenotype Yi may be a
 multivariate phenotype, with qualitative and/or quantitative components.

 Two alternative views of the conditional independence structure are shown in
 Figure 1.3: this pedigree is slightly modified from our usual example, in order

 to have an individual with two spouses. As can be seen from equations (1.4)

 and (1.5), the conditional probability of a genotype Gi of individual i, given the
 genotypes of all other pedigree members, and given the data Y, depends only

 on the data Yi on individual i, and on the genotypes of parents, spouse(s), and
 offspring (Figure 1.3(a)). At a finer scale, provided paternal and maternal genes

 of individuals are distinguished, we may consider the dependence structure among
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 1.4. MODELS, PARAMETERS, AND INFERENCES 7

 FIGURE 1.3. The conditional independence neighborhood structure on a pedigree: (a) the
 individual neighborhood, and (b) the haplotype neighborhood. The reference individual (a) or
 haplotype (b) is dark shaded. The individuals [haplotypes] defining the local dependence structure
 for the reference individual [haplotype] are light shaded

 haplotypes (Figure 1.3(b)). Here, for example, for a paternal haplotype of a female
 individual i, the dependence is on the data Yi, the maternal haplotype of i, the two
 haplotypes of the father of i, and the maternal haplotypes of the children of i. These

 are the haplotypes that segregate to, with, or from the paternal haplotype of i. The
 set of possible states of a haplotype neighborhood is smaller than of the genotypic
 neighborhood, since there are fewer haplotypes than multilocus genotypes, the
 latter being pairs of haplotypes; however there are more haplotype neighborhoods in
 the pedigree. Either can be more computationally efficient to consider in computing
 the probability of data on the pedigree (equation (1.5)).

 1.4 Models, parameters, and inferences

 Considered as a function of the parameters 0 of the genetic model the probability
 Pr(Y) of equation (1.5) is the likelihood function L(O). Broadly, there are three
 classes of parameters. First, there are population parameters, such as allele
 frequencies and allelic associations within and among loci. These index the
 probability distributions of founder genotypes and haplotypes in equation (1.4).
 Some examples of the estimation of these parameters from population data will be
 considered in Chapter 2. Other parameters such as those of assortative mating also
 enter into the probabilities of founder genotypes. Phenotypic correlations between
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 8 CHAPTER 1. GENES, PEDIGREES AND GENETIC MODELS

 spouses impose genotypic dependencies which influence the probability distributions
 for offspring data. However, assortative mating will not be considered further in
 this monograph.

 Second, there are transmission parameters which index the probability
 distributions of the meiosis indicators, and hence the probability of offspring
 genotypes, conditional on those of parents (equation (1.4)). Most importantly,
 there are parameters such as recombination frequencies, which characterize
 the dependence in meiosis among loci on a chromosome. The estimation of
 recombination frequencies will be addressed in Chapter 4, and linkage analysis
 more generally will be addressed throughout the monograph. The other major class
 of transmission parameters are those characterizing any deviations from Mendelian

 segregation. In some approaches to segregation analysis (Elston and Stewart, 1971),
 a test of Mendelian segregation proportions is performed. Theoretically, each
 heterozygote should transmit each allele with equal probability, and the probability
 distribution of the meiosis indicators should not depend upon the allelic types of
 the genes. However, caution is necessary in interpreting the results of such tests.
 Apparent distortion may result from selection; offspring individuals surviving to be
 typed, or to reproduce, may not be a random sample of those resulting from meiosis.
 In the case of crop plants, or domestic animals, there may be very strong artificial
 selection on certain loci, which affects the apparent segregation at loci on the same
 chromosome. In the case of studies of data on human pedigrees, similar apparent
 distortions can result from the ascertainment of pedigrees, or of parts of a pedigree,
 in which a particular trait is segregating. This ascertainment also leads to distorted
 segregation patterns at linked marker loci showing any allelic associations with the
 trait locus. Indeed, some tests for linkage in the presence of trait-marker allelic
 associations are tests of apparent segregation distortion in the meioses to affected
 offspring. Ascertainment is an important topic in the analysis of data on human
 pedigrees, and there is a large literature from Weinberg (1912) to Karunaratne and
 Elston (1998). However, it is outside the scope of this monograph.

 Third, there are penetrance parameters indexing the relationship between

 genotype and phenotype. These enter only into Pr(Y I G) (equation (1.5)). The
 probability that an individual carrying a certain allele is affected by a trait is known
 as the penetrance of the allele, which includes the degree of dominance. Another
 penetrance parameter is the probability of phenocopies (individuals exhibiting
 the phenotype of a genetic trait, but not having the predisposing genotype).
 More generally, penetrance parameters may characterize allelic and genotypic
 contributions to a quantitative trait, and the effects of individual environmental
 effects and covariates. Important covariates include gender and age; many complex
 traits are age and gender dependent. Also, different genotypes predisposing to the
 same disease may have different effects on age of onset. Additionally, there may
 be interaction effects, between alleles at different loci contributing to a given trait
 (epistasis), between multiple traits affected by alleles at a single locus (pleitropy), or
 between genetic effects and environmental covariates. The focus of this monograph
 is on Mendelian traits, such as DNA markers. We shall not consider the broad
 spectrum of parameters indexing the relationship between genotype and complex
 phenotypes.
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 1.4. MODELS, PARAMETERS, AND INFERENCES 9

 The primary focus of this monograph is methods for inference from genetic

 data on pedigrees. We shall focus on inferences about the parameters of genetic

 models; that is, on segregation and linkage analysis. As data become increasingly
 available on a genomic array of markers, we focus on genetic mapping and the

 analysis of genetic maps. However, with a given genetic map, the probability of
 data Pr(Y) (equation (1.5)) provides a likelihood for an hypothesized pedigree

 structure among individuals. Thus, pedigree validation and relationship estimation,

 using a genomic array of linked DNA markers, are methodologically analogous
 to segregation and linkage analysis. Other inference questions also require the

 computation of a probability Pr(Y), of phenotypes observed on some members of
 a pedigree structure. For example when both genetic model and pedigree structure

 are assumed correctly known, data provide information for the inference of ancestral
 origins of alleles (Geyer and Thompson, 1995), or of phenotypic risks for individuals.
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 Chapter 2

 Likelihood, Estimation and

 Testing

 2.1 Likelihood and log-likelihood.

 In this and the following section, we review briefly the basic ideas and results of

 likelihood inference: details may be found in any standard mathematical statistics

 text for beginning graduate students. A vector of data random variables, Y, whose

 value y is observed, has one of a family of probability distributions {Po; 9 E EI},
 indexed by a parameter 0 in parameter space E). The goals of estimation are to make

 inferences about which Po gave rise to the observed y, and to assess the uncertainty
 associated with this inference.

 The likelihood is Ly(9) = Pa(y), a function of 0. The likelihood provides
 the connection between the data y and the probability model Po. A statistic is a

 function of the data random variables Y, an estimator T = T(Y) is a statistic
 taking values in e, while the estimate is T(y), the value taken by the estimator
 that is used to estimate 9.

 For example, suppose Yi, i = 1, ..., n are independent identically distributed
 Bernoulli random variables, B(1, 0), the indicators of success in n independent

 trials, each with success probability 0. Then Po(y) = OY(1 - 0)l-y (y = 0,1) for
 each trial, and L(9) = Hl'(9yi (1 - 0)1-Yi). The log-likelihood is

 n n

 (2.1) t(9) = logL(0) = (Eyj)log(0)+(n-Eyi)log(1-0).
 1 1

 Note that the (log)-likelihood depends only on the value of T = 1 Yi, the total
 number of successes, which has a binomial B(n, 0) distribution. The likelihood
 based on the binomial probability of the observed value t of T is

 L(0) = Po(T=t) = t) _ (-9)f-t
 k! (n -k)

 (2.2) t(0) = log L(0) = const + t log(0) + (n-t) log(1-0).

 11
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 12 CHAPTER 2. LIKELIHOOD, ESTIMATION AND TESTING

 Up to an additive constant which does not depend on 0, the log-likelihood (2.2) is
 the same as that of equation (2.1). A statistic T for which this is the case is said

 to be sufficient. It is immaterial whether one considers the likelihood based on the

 full data Y = (Y1,.. . ,Y,,) or that based on a sufficient statistic such as T. Log-
 likelihoods are defined only up to an additive constant; only ratios of likelihoods
 are relevant for inference.

 The maximum likelihood estimate (MLE) maximizes the likelihood as a function

 of 0, to give the value of 0 that "best explains" the data y. To obtain the MLE, we

 maximize Po (y), or log Po (y) with respect to 0. For example, differentiating the
 log-likelihood (2.2) with respect to 0

 t _ n-t
 9 1 -9

 Maximizing (2.2) by setting the derivative e'(0) equal to 0 gives the MLE 9 = t/n.
 In general, the equation 1'(0) = 0 is known as the likelihood equation.

 An estimator, T(Y), is unbiased if, for any 0 E e, Y Po ==> E(T(Y)) = 0,
 where E(.) denotes expectation. We rewrite this definition as Eo(T(Y)) = 0
 for all 0 E E, the subscript indicating the "true" 9-value the value indexing the
 probability distribution with respect to which the expectations are evaluated. The

 bias of estimator T(Y) is bT(0) = Eo(T(Y)) -0. An unbiased estimator is "correct,
 on average", over repetitions of the experiment. For example, if T is binomial

 B(n, 0), then Eo (T) = n9, so the MLE is unbiased. However, unbiasedness alone is
 a very weak criterion. Some unbiased estimators may have poor properties, while
 many "good" estimators are biased. In particular many MLEs are biased, but under

 very broad conditions the bias decreases as the sample size increases.

 A more important criterion is that an estimator should have small mean square

 error (mse). The mse of estimator T(Y) is mseo(T) = Eo((T(Y) - 9)2). If T is
 unbiased, mseo(T) = varo(T), while, in general,

 mseo (T) = varo (T) + (bT (0))2.

 For example, for the unbiased maximum likelihood estimator T/n of the binomial
 parameter 0,

 mse(T/n) = var(T/n) = var(T)/n2

 (2.3) = n0(1 - 0)/n2 = 0(1 - 0)/n

 Consider an n-sample y(n) = (Y1, ..., Yn), where the components Yi are
 independent and identically distributed, and a sequence of estimators (Tn) where
 Tn = T(Y(n)). Then the sequence of estimators (Tn) is consistent for 0 if, for every
 0 e , and every e > 0, Po(IT, - 9 1 > e) - 0 as n -4 oc. In the binomial example,
 equation (2.3), the mse of the MLE, T/n, tends to 0 as n -+ oo, and hence the
 sequence of estimators, (T/n), is consistent.

 Clearly, maximization of L(9) is equivalent to maximization of t(9) = log(L(9)).

 Moreover, if al(0) is a one-one function of 0 then ) = al(). Likelihood is a
 pointwise function of 0; transformation of the parameter space E does not alter the
 likelihood.
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 2.2. ESTIMATION, INFORMATION, AND TESTING 13

 2.2 Estimation, information, and testing

 In likelihood inference, a key entity is the expected log-likelihood E90 (log(Po (Y))).
 This notation denotes that the true value of the parameter 0 is 00, and it is the
 distribution under So with respect to which expectations are taken. The expected
 log-likelihood is thus a function both of the true 00 and the hypothesized 0. From
 the convexity of the function - log(.), it follows by Jensen's inequality that

 Eo0(log(Po0(Y))) - log(Po(Y)) = E0o (-log (p y))))

 > -log E( PO (Y) )

 - log ( Po(Y) Po, (y))

 - log(E Po(y))
 y

 (2.4) - log(1) - 0

 Thus the expected log-likelihood is maximized with respect to 0 by 0 = 00: the
 expected log-likelihood is maximized at the true value of the parameter. The non-
 negative difference

 K(0;So) = Eo0(log(P0o(Y)) - log(Po(Y)))

 is known as the Kullback-Leibler information (Kullback and Leibler, 1951). One
 of the fairly immediate consequences of equation (2.4) is that under very broad
 conditions MLEs are consistent.

 A related result is the Cramer-Rao lower bound which says that (subject to some
 regularity conditions) no unbiased estimator can have a variance smaller than

 [E0o (-of2 log(Po.(Y))) -

 The quantity within the square brackets is known as the Fisher information. The
 larger the information, the smaller the variance can be. Subject to a few additional
 conditions, MLEs are asymptotically approximately Normal (Gaussian), with mean
 00, the true parameter value, and variance the inverse of the Fisher information.
 This says that, in large samples, MLEs are the best estimators. The required
 regularity conditions will be satisfied for most of the examples discussed in this

 monograph. A condition which may sometimes fail is that the true value 00 should
 lie in the interior of the parameter space E).

 Of course, the value of 00 is unknown, but at least for large samples, the MLE
 9 is close to the true value So. Thus, 0(y) may be substituted for 0o in the
 Fisher information, to obtain an estimate of the variance of the MLE. In fact,
 the expectation in the Fisher information can be hard to compute. Then, at least
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 14 CHAPTER 2. LIKELIHOOD, ESTIMATION AND TESTING

 for large samples, an alternative is the observed information

 92
 -002 log(P0o(Y))

 evaluated by substituting the observed y for Y and 0(y) for 00. The theoretical
 details and justification may be found in a mathematical statistics text.

 To provide an example which should be familiar to readers, we return to the case
 of a binomial random variable: T is B(n, 0). As before (equation (2.2))

 t(0) = const + T log(0) + (n - T) log(1- 0)

 and the MLE is T/n which has expectation 0 and variance 0(1 - 0)/n. Now,

 (0) T (n -T)
 02 -(1 -0)2

 Since Eo(T) = nO, and Eo(n - T) = n(1 - 0), the Fisher information is n/0(1 - 0).
 Thus in this example, the MLE has the smallest possible variance.

 In practice, we estimate the variance as

 0(1 - 0)/n = t(n - t)/n3

 where t is the observed value of T. In fact, the same result is given by substituting
 9 = t/n for 0 in -1/ft(0), without going through the expectation step. It is not in
 general true that the two methods of obtaining an estimated variance of the MLE
 give identical formulae.

 Just as the maximum likelihood estimate is the value of the parameter that best
 explains the observed data, the maximized value of the likelihood is a measure of
 how well this parameter value is supported by the data, relative to how well other
 parameter values are supported by the observation of these data. Accordingly, we
 define

 L(E0) = max(L(0))

 as a measure of support for the hypothesis 0 E 00 c E, and

 A(61 : 30) = L(01)/L(0o)

 as a measure of the relative support for the two hypotheses 0 e E), and 0 C e0.
 In the case when e0 C e1, A > 1, and 2 log, A > 0. Again subject to regularity

 conditions, asymptotically, if 0 e 00 is true, then 2 loge A is approximately
 distributed as a chi-squared (x2) random variable, with degrees of freedom equal to

 dim(01) - dim(eo). If the true value 00 is not in the hypothesis space 00 but is in
 O1, then 2 loge A -+ oo at a rate which depends on the minimum Kullback-Leibler
 information:

 inf K(0;Oo) = inf (Eo0(log(Po0(Y)) - log(Po(Y)) ))
 GEe0 OEE0o
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 2.2. ESTIMATION, INFORMATION, AND TESTING 15

 The regularity conditions in order that these results hold are essentially the same

 as the ones needed for the asymptotic results about MLEs. They will hold in the
 examples we discuss.

 In particular, much of the data in genetics is multinomial, consisting of counts of

 outcomes of various types. It is therefore useful to consider the case of the general
 multinomial model. Suppose there are r possible outcomes, having probabilities

 pi,i = 1, ... , r, and a vector of parameters 0, so pi is pi(a). The log-likelihood is

 r

 (2.5) = const + ni logpi
 i=1

 For the general model, > i = 1 with no other constraints:

 r r-1 r-1

 e = Enilogpi = lnJogpi + n log(l- pi)
 i:=l i=l i=l

 ae ni nr =W _ l l

 aPi Pi Pr

 for i = 1,... , r - 1, giving the MLE Pi = ni/n. The maximized value of the
 log-likelihood is

 r r

 (2.6) e = E ni log pi = E n log nP - n logrn
 i=l i=1

 The dimension of the general hypothesis space is r - 1 since the pi are constrained
 to sum to 1.

 Under a constrained model, the outcome probabilities Pi will be functions of

 some parameters Oj, where normally the dimensionality of 0 is less than r - 1. To
 estimate 0 we must solve the equations

 C9e ni Pi9p
 - = E for all j

 It is also possible to find the Fisher information:

 a 3 2t ni aPi 19Pi E n 02Pi
 aOjaOk P. 1 Pi 0909k ZPi ,09.0ak

 Now E(ni) =npi, so

 E_E np =Pi V - 02p9
 aO 6Jaf9k JPi 1 p20j 906k ilPi aOj a69k

 r1 (Pi aPi r 02pi
 = E P > iSp 69; n _
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 16 CHAPTER 2. LIKELIHOOD, ESTIMATION AND TESTING

 -n1,_ 1 Pi 'Pi _ =1 =Pi
 i=1 Pi 190j (90k C90ja0k r _____ a2z=1p

 (2.7) n1=

 since p=1 Pi 1. Equation (2.7) is sometimes known as Fisher's formula.

 2.3 Population allele frequencies

 In this section, we consider three examples of the above formulation, in the context

 of estimation of population allele frequencies. Consider a single genetic locus,

 with k alleles Aj and having population frequencies qj, j = 1,... , k. Now in a
 random-mating population, the allelic types of the maternal and paternal genes in

 an individual are independent. Thus the probability an individual is homozygous

 Aj Aj is q7, while the probability the individual is heterozygous Aj Al (j < 1) is
 2qjql. These genotype frequencies are known as Hardy-Weinberg proportions, and
 a population exhibiting genotypes in these proportions is said to be in Hardy-
 Weinberg equilibrium.

 First suppose the alleles Aj are codominant, and a random sample of
 n individuals is taken from a population assumed to be in Hardy-Weinberg

 proportions. Suppose that njl (j < 1) individuals are observed to be of genotype
 AjA1. As above (equation (2.5)), the log-likelihood is

 k

 = const + E njjlog(q ) + E n3llog(2q,ql)
 j=1 1?j<l<k

 k

 = const + ? mjlog(qj)
 j=1

 where mj = 2njj + El<j nlj + j,<1 nji, is the number of Aj alleles among the
 2n alleles of th n sampled individuals. Hence the MLE of qj is mj/2n, the sample
 proportions of the allelic types. The MLE has variance qj (1 - qj)/2n.

 Most natural populations show some degree of subdivision or structure, and so
 do not exhibit Hardy-Weinberg equilibrium. The deviation from Hardy-Weinberg
 proportions may be small and detectable only from large samples. Testing
 Hardy-Weinberg proportions is straightforward in the case of a random sample

 of individuals typed at a locus with codominant alleles. Under the general model,

 there are -k(k + 1) genotypic counts nj3 with the maximum log-likelihood given by
 equation (2.6), while assuming Hardy-Weinberg proportions, there are k allelic

 counts mj with the same multinomial form of maximum log-likelihood. The
 dimension of the larger hypothesis space is 2 k(k+ 1) - 1, and of the smaller is k- 1. If
 Hardy-Weinberg proportions do hold in the population, then twice the difference in

 log-likelihoods is distributed as a chi-squared random variable on - k(k- 1) degrees

 of freedom (X2k(k-))-
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 2.3. POPULATION ALLELE FREQUENCIES 17

 A locus with two alleles is said to be diallelic, although the alternative biallelic
 is now used increasingly in the literature. As an example of the use of Fisher
 information, consider the case of a diallelic trait locus, with a recessive allele
 with allele frequency q. Assuming Hardy-Weinberg proportions, there are two
 phenotypic categories (r = 2), with population frequencies pl(q) = q2, P2(q)
 1 - q2. Suppose n individuals are sampled, and t are found to be of the recessive

 phenotype. Since pi(q) is a 1-1 transformation of q, over the parameter space

 O < q < 1, the MLE of q is q = (jj = t/n. This may also be verified by direct
 differentiation of the log-likelihood

 t(q) = t log(q2) + (n - t) log(1 - q2)

 Now also

 ___ &P2 = 2q and 2q,
 9q 9q

 so using Fisher's equation (2.7)

 n= n (4(2q)2 + 1q2&-2q2)

 4n

 (1 - q2)

 Thus the large-sample variance of the MLE is (1 - q2)/4n, which is (1 + q)/2q times
 larger than the variance q(l - q)/2n obtained if the genotypes were observable. Of
 course, when there are only two phenotypes, there are no degrees of freedom to test
 for Hardy-Weinberg proportions.

 As another example, consider the estimation of allele frequencies at a diallelic
 locus, when, instead of random individuals, we sample parent-offspring pairs. This
 might arise, for example, if our sample was of mothers with new-born infants.
 Table 2.1 shows the conditional and joint probabilities of feasible mother-child
 combinations.

 Pr(childlparent) for Pr(parent, child) for
 parent probab- child genotype child genotype

 genotype ility AjAi AiAj AiA1 AjAi AiAj AiAl
 AjAi qA qi qj q q q?qj q2q
 AiAj 2qiqj qi (qi +qj) ql qijqj qiqj(qi +qj) qiqqj ql

 TABLE 2.1. Conditional and joint probabilities of feasible mother-child genotype combinations

 In the case k = 2, let nij be the number of mother-offspring pairs in which the
 mother has genotype gi and the offspring has genotype gj, where go = A1 Al, gi =
 A1A2 and 92 = A2A2. Since qi + q2 = 1, every term in Table 2.1 is a product of
 allele frequencies, and the multinomial log-likelihood reduces to

 = nij log Pr(gi, gj)
 (i,j)
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 18 CHAPTER 2. LIKELIHOOD, ESTIMATION AND TESTING

 noo log(ql) + no, log(q'q2) + nio log(q2q2) + nil log(qlq2)
 + n12 log(qlq2) + n2l log(qlq2) + n22 log(q3)

 = (3noo + 2(nol + nio) + nil + l12+ n2l) log qu +

 (3n22 + 2(n2l + nl2) + nil + n1o + no,) logq2

 (2.8) = ml log ql + m2 log q2

 where m1 is the number of distinct A1 alleles, and m2 is the number of distinct
 A2 alleles, in the set of pairs. (By "distinct" we mean that we do not count both
 copies of an allele which segregates from parent to offspring.) The MLE of q, is
 thus ml/(ml + M2). Note that

 ml + M2 = 3(nloo +no, +flio+ n2l nl2++n22) + 2n1l

 = 3n - n1l

 where n is the number of parent-offspring pairs. Although finding the MLE is a

 matter of "gene-counting", the total number of distinct genes to be counted is not
 4n, since parent and offspring share one gene, nor even 3n. For each (91, gl) =
 (A1A2, A1A2) pair, one gene of allelic type A1 and one of type A2 can be counted,
 but the third distinct gene may be of either type, and does not contribute to the
 likelihood.

 factor freq. phenotype frequencies
 A B A B AB 0

 Data 0.422 0.206 0.078 0.294

 H1 theory p q p(1-q) p(1 - q) pq (1-p)(1-q)

 HI fitted 0.500 0.284 0.358 0.142 0.142 0.358
 H2 theory p q p2 + 2pr q2 + 2qr 2pq r2
 H2 fitted 0.295 0.155 0.411 0.194 0.091 0.303

 TABLE 2.2. Data and estimated frequencies for Bernstein's analysis of ABO blood type
 determination

 As a final example in this section, we consider the classic analysis of Bernstein
 (1925) who established the mode of determination of the ABO blood types using
 data on population phenotype frequencies. The development in terms of likelihood
 ratio tests is due to Edwards (1972). Bernstein reported ABO blood types on

 a sample of 502 individuals: 42.2% type A, 20.6% type B, 7.8% type AB and
 29.4% type 0 (Table 2.2). It is a minor mystery of Bernstein's data that these
 proportions do not give integer counts with a sample of n = 502; however we ignore
 that question here.

 Now there were two prevailing hypotheses for the determination of the ABO
 blood types, the first, H1 being that A and B are independently inherited factors,
 The frequency of individuals in the sample having the factor A is 0.500 (blood
 types A or AB), and B is 0.284 (blood types B or AB). As pointed out by
 Bernstein, independence of the factors would give an AB frequency of 0.500 x
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 2.3. POPULATION ALLELE FREQUENCIES 19

 0.284 = 0.142 much larger than the 0.078 observed. More rigorously, we can perform
 a likelihood ratio test of H1 against the general multinomial alternative. For the

 general alternative, the fitted frequencies are the observed frequencies, and the
 log-likelihood is

 ? = 502(.422 log .422 + .206 log .206 + .078 log .078 + .294 log .294)

 - -626.71

 Under the hypothesis H1 the estimated frequencies are as shown in Table 2.2, and
 the log-likelihood is

 Li = 502(.422log.358 + .2061og .142 + .078log.142 + .294log .358)
 = -647.50

 Twice the log-likelihood difference is 41.58, and would be the value of a x2 random
 variable if H1 were true. Clearly, H1 is rejected.

 The second hypothesis, H2 is that A and B are the two non-null alleles of a single
 system. If the three alleles A, B and 0 have frequencies p, q and r (p + q + r = 1),
 and if Hardy-Weinberg proportions hold, then the frequencies of the four blood
 types are p2 + 2pr, q2 + 2qr, 2pq and r2 (Table 2.2). Bernstein pointed out that
 the sum of the A and 0 blood type frequencies is (p + r)2, or one minus the square
 root of this frequency is (1 - p - r) = q. Similarly one minus the square root of
 the sum of the B and 0 blood type frequencies is p, and the square root of the 0
 blood type frequency is r. The sum of these three numbers should be one. For his
 data

 (1- 0.422+0.294) + (1- 0.206+0.2.94) + 0.29 = 0.99

 which is close to one, suggesting a good fit. Again, more formally, we may perform
 a likelihood ratio test. However, finding the MLEs of the parameters p, q and r is
 not simple; in fact, we shall discover in section 2.5 that these MLEs are - = 0.2945
 and q4 = 0.1547, with the resulting fitted frequencies given in Table 2.2. The fitted
 frequencies are all close to the observed ones, and the log-likelihood is

 f2 = 502(.422log.4114 + .206log.1942 + .0781og.0911 + .294log.3033)

 = -627.52

 Twice the log-likelihood difference between this and the general alternative is now
 only 1.62. Again, this is the value of a x random variable if H2 is true, and this
 hypothesis is not rejected.

 Of course, there is also evidence on the ABO blood type determination in
 the transmission of genes from parents to children. For example, under H2 an
 AB parent cannot have an 0 child, while under H1 this may happen. Both
 inheritance patterns and population frequencies can provide information on genetic
 mechanisms. Bernstein's analysis is perhaps the first example of determination of
 the genetic model underlying a trait from population frequency data, rather than
 from the inheritance patterns in pedigrees.
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 20 CHAPTER 2. LIKELIHOOD, ESTIMATION AND TESTING

 2.4 The EM algorithm; general formulation

 Many of the problems in genetic analysi. fall within the classical missing data or
 latent variable framework. Many data i -y be missing, in the sense that some

 pedigree members may be unobserved, )r not all marker phenotypes observed
 even for some available pedigree membe -s. We therefore prefer the term latent

 variables for unobservable features, such as the multilocus haplotypes of individuals
 (equation (1.5)), or the meiosis indicators that specify the descent of genes in

 pedigrees (equation (1.2)). An important approach to likelihood analysis, and
 specifically to maximum likelihood estimation, in such latent variable problems was
 provided by Dempster et al. (1977). Although their approach had been developed
 previously in many special cases, they provided the overall framework, giving it the

 name the EM algorithm, or expectation-maximization algorithm.

 For generality, we denote latent variables by X, bearing in mind that for

 our examples, these will generally be meiosis indicators, genotypes, indicators of
 genotypic status or linkage phase, or genotypic or allelic counts. For simplicity, we

 use summation rather than integration over latent variables, since for the majority
 of our examples, the latent variables are discrete. The structure of any latent
 variable problem is that the likelihood L(0) from observed data values y of the
 data random variables Y is

 L(0) = Po(Y = y) = EPo((X,Y) = (x,y))
 x

 Now the joint probability of data and latent variables is

 Po ((X, Y) = (x, y)) = Po ((X = xlY = y))Po (Y = y).

 This joint probability, considered as a likelihood of parameter 0, is known as the
 complete-data likelihood. Taking logs and rearranging,

 (2.9) logL(0) = logPo((X,Y) = (x,y)) - logPo((X = xIY = y)).

 Now define

 Hy(0;9*) = Eo*(logPo(X,Y) I Y = y)
 Gy(0;0*) = Eo*(logPo(X I Y = Y) I Y = y)

 The function Hy(0; 9*) is the expected complete-data log-likelihood, while the
 Kullback-Leibler information (section 2.2) in the conditional distribution of X given
 Y = y is

 Ky(9;0*) Gy(9*;9*)-Gy(0;0*).

 Taking expectations over X, under model 0*, conditional upon Y = y, in equation
 (2.9) we obtain

 logL(0) = Hy(0;0*) - Gy(0;0*)
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 2.4. THE EM ALGORITHM; GENERAL FORMULATION 21

 since L(0) does not depend on the random variable X. Now suppose that 9
 maximizes Hy (0; 9*) over 0, and consider

 logL(0)-logL(9*) = (Hy(0;0*) - Hy(9*;9*)) +

 (2.10) (Gy(9*;9*) - Gy(;90*))

 Now 9 maximizes Hy(0; 0*). Also, for any probability distributions Po(.) indexed
 by parameter 0, E *(Po(X)) is maximized by 0 = 0* (equation (2.4)). Thus

 (2.11) Hy(;90*) > Hy(9*;9*) and Gy(9*;9*) > Gy(6;0*)
 (2.12) so logL(9) > logL(9*)

 with equality only if 9 and 0* provide the same conditional distribution for X given
 y =y.

 Thus we have the EM algorithm for finding MLEs (Dempster et al., 1977).
 E-step (expectation):

 At the current estimate 9* compute Hy(0; 0*) = E,9 (log Po(X, Y) Y =y)
 M-step (maximization):

 Maximize Hy(9; 0*) with respect to 9 to obtain a new estimate 9.
 E-steps and M-steps are alternated, and, in accordance with equation (2.12) the
 likelihood is non-decreasing over the process. Where the likelihood surface is

 unimodal, convergence to the MLE is assured, although it may be slow.

 In the case when the complete-data joint probability Po ((X, Y) = (x, y)) is an
 exponential family of full rank, the EM equations take a particularly simple form.
 If Tj(X,Y), j = 1, ..., k are the natural sufficient statistics, with corresponding
 natural parameters agj (0), j = 1, ..., k,

 k

 Po ((X, Y) = (x, y)) = c(0) exp( Tj (x, y)aj (9))
 j=1

 k

 Hy (0; 0*) = log c(0) - E Eo* (Tj (X, y) Y= y)aj (0)
 j=1

 MHy a log c(0) _ Eo* (Tj (X, y) Y = y)

 = Eo(Tj(X, Y)) - Eo* (Tj(X, Y) I Y = y).

 Thus to implement EM in this case we compute the conditional expectations of the

 natural sufficient statistics Tj, give the data Y, under the current estimate 0* and
 set them equal to their unconditioned expectations to obtain the new estimates
 9. Thus the EM algorithm is often discussed in terms of the E-step "imputing"
 the latent variables conditional upon the data Y under the currrent estimates 9*,
 and the M-step being the maximization of the complete-data log-likelihood, using
 these imputed variables. Although for many practical cases this is so, some care
 is needed. Only in the case of an exponential family of full rank is the expected
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 22 CHAPTER 2. LIKELIHOOD, ESTIMATION AND TESTING

 complete-data log-likelihood a linear function of the natural sufficient statistics Tj.
 Even in this case, Tj may not be linear in the latent variables X, so that

 Eo* (Tj (X, y) I Y = y) 54 Tj (Eo -(X I Y = y), y)
 An example is given in section 2.6.

 This monograph will take a likelihood approach to inference, but some of the
 methods are closely related to those of Bayesian inference. In Bayesian inference,
 parameters 0 are given a prior probability distribution 7r(9) which expresses
 information or belief about parameter values before data Y are observed. After

 data are observed, beliefs about 0 are expressed via the posterior distribution

 _0y i r(9)Pr(Y; 9)
 w(91lY) - 7r(0)Pr(Y; 9)d9

 Bayesian inferences are based on the posterior probability distribution for
 parameters of interest. Clearly the likelihood L(0) = Pr(Y; 0) is closely related
 to the Bayesian posterior.

 Bayesian inference is often useful where there are many parameters, only a
 few of which are of interest. The nuisance parameters are integrated over to
 provide a marginal posterior distribution for a parameter of interest. This is thus

 often a convenient way to view a multi-parameter likelihood surface, integrating
 over nuisance parameters with respect to some prior distribution, rather than
 maximizing over them to obtain a profile likelihood. From the Bayesian viewpoint,
 there is no difference between latent variables X and parameters 0, and the
 conditional probability distribution of X given observed data Y would be referred
 to as a posterior distribution for X, whereas the probability unconditioned on data
 would be the prior distribution for X at a given value of 0. To avoid confusion,
 we shall refer to the distribution of X given Y, indexed by parameter 0 as the
 conditional distribution, and reserve the word posterior for a Bayesian posterior for
 model parameters 9. We shall, however, refer to the model-based distribution for
 latent variables X as a prior distribution for X. This should not be confused with
 a Bayesian prior distribution for model parameters 9.

 2.5 Gene counting and the ABO blood types

 We have seen in the examples of section 2.3 that, where genotypes are observable,
 estimating allele frequencies is just a matter of counting the genes. In a slightly more
 general sense, the same is true when genotypes cannot be fully observed. "Counting
 methods" have been used to estimate allele frequencies since the approach was
 first introduced by Ceppelini et al. (1955). In fact, these methods are particular
 instances of the EM-algorithm (section 2.4).

 Given a sample of n individuals, the phenotypic counts nj, i = 1,... ,r, are
 multinomial, with probabilities pi(q), where q = (q1,...,qk) is the vector of
 underlying allele frequency parameters to be estimated:

 (2.13) e = logPr(n1,. . . ,nr) = Enilogpi(q)
 i-z1
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 2.5. GENE COUNTING AND THE ABO BLOOD TYPES 23

 The complete-data, consisting of the counts mj of allelic types of all distinct genes
 in the sample, are also multinomial:

 k

 log Pr(m,.. ,mk) = E mj log qj.
 j=l

 Determining the conditional expected complete-data log-likelihood (E-step), is

 simply a matter of determining the expectations ej of allele counts mj given the
 phenotypic counts ni and current estimates of the allele frequencies qj. The M-step
 is even simpler: the new estimate of qj is the proportion ej/m*. Here, m* is the
 number of distinct genes in the n individuals: for the case of samples of unrelated
 individuals, m* = 2n.

 current current recessive dominant

 q 2q/(1 + q) phenotype phenotype new q =
 t1 = 36 t2 + t3= 64 (2t1+ t2)/2n
 AA AB BB

 0.5 0.667 36 42.67 21.33 0.573

 0.573 0.729 36 46.64 17.36 0.593

 0.593 0.745 36 47.66 16.34 0.598

 0.598 0.749 36 47.91 16.09 0.600

 0.600 0.750 36 48.00 16.00 0.600

 TABLE 2.3. Sequence of EM iterates for the example of estimation of the frequency of a recessive
 allele

 We consider two examples of the above, the first being the case of a recessive
 allele, with allele frequency q. Suppose in a sample size n = 100 there are n1 = 36
 of the recessive type AA. As seen in section 2.3, the MLE of q is 0.36 = 0.6.
 Although the EM algorithm is unnecessary here, it provides a useful example.

 The three genotypes are AA, AB and BB, with counts say ti, (i = 1,2,3). Now,
 ni = ti, but the counts of AB and BB are unobservable since B is dominant to A.
 If these counts, t2 and t3, were known, then the number of A alleles is m1 = 2t1 + t2,
 and the MLE of q would be (2t1 + t2)/2n. Further,

 Pr(AB I AB or BB) = 2q(l - q) = 2q
 1 -q2 1+q

 so

 Eq(t2 In2 = t2 + t3= 64) = 64 2q

 So now the EM-algorithm implements the sequence of iterates shown in Table 2.3.
 Starting from an arbitrary initial value q = 0.5, the proportion 2q/(1 + q) is
 computed, and the 64 individuals of dominant phenotype divided into the expected
 numbers t2 and t3 that are that are AB and BB, respectively (E-step). Then a
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 24 CHAPTER 2. LIKELIHOOD, ESTIMATION AND TESTING

 current values phenotype A phenotype B ...

 p q 2r 2r Pr(A) = 0.422 Pr(B) = 0.206 .
 AA AO BB BO ...

 0.3 0.3 0.73 0.73 0.115 0.307 0.056 0.150 ...
 0.308 0.170 0.77 0.86 0.096 0.326 0.029 0.177 ...
 0.298 0.156 0.79 0.87 0.091 0.331 0.026 0.180 ...

 0.295 0.155 0.79 0.88 0.089 0.333 0.025 0.181 ...

 phen AB phen 0 new values

 ... Pr(AB) = 0.078 Pr(OO) = 0.294 p q
 ... AB 00

 ... 0.078 0.294 0.308 0.170

 ... 0.078 0.294 0.298 0.156

 ... 0.078 0.294 0.295 0.155
 ... 0.078 0.294 0.295 0.155

 TABLE 2.4. EM iterates for the estimation of ABO allele frequencies. The iterates of allele
 frequencies, and the resulting conditional probabilities of genotype AO and BO, given phenotypes
 A and B, respectively, are shown in the upper left panel. Then are shown the resulting expected
 genotype frequencies, given the observed phenotype frequencies and current allele frequency
 estimates (E-step). Finally, in the lower right are shown the new iterates of the allele frequencies
 (M-step)

 new value of q is estimated as (2t1 + t2)/2n (M-step). The process is repeated, and
 convergence to the MLE q = 0.6 is obtained within five steps.

 The second example provides the MLEs of the ABO blood group allele
 frequencies discussed in section 2.3. Here the EM-algorithm is in fact one of the
 easiest ways to find the MLEs, since there is no explicit solution of the likelihood
 equation. Now, we must partition both the count of A phenotypes into expected
 counts of AA and AO genotypes, and the B phenotype into BB and BO genotypes:

 Pr(AO I type A) - 2pr 2r
 p2+ 2pr p-P 2r

 Pr(BO I type B) - 2qr _ 2r
 q2+ 2qr q q+2r'

 Once the counts are partitioned, according to current estimates of allele frequencies,
 the new estimate of the A allele frequency p is Pr(AA) + (Pr(AO) + Pr(AB))/2, and
 the new estimate of the B allele frequency q is Pr(BB) + (Pr(BO) + Pr(AB))/2.
 Recall, Bernstein (1925) reported a sample of 502 individuals, with frequencies
 of the four types, A, B, AB and 0, 0.422, 0.206, 0.078, and 0.294, respectively.
 Table 2.4 shown the sequence of EM-iterates, with convergence being obtained,
 from starting values p = q = 0.3 in four iterations. Again, the details of this
 example are due to Edwards (1972).

 One interesting feature of the sequence of iterates in this example is that the
 value of p does not change monotonely; there is no reason why it should. What is
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 2.6. EM ESTIMATION FOR QUANTITATIVE TRAIT DATA 25

 guaranteed to change monotonely is the value of the log-likelihood, which, for given

 allele frequencies may be easily evaluated (section 2.3 and equation (2.13)). For
 this example, over the iterations, the values of the log-likelihood are -687.1242,

 -628.9991, -627.5693, -627.5262, -627.5246. Note that, typically of the EM
 algorithm, the log-likelihood increases rapidly in the first steps, and the parameter

 values move rapidly to the neighborhood of the MLE, whereas the final convergence
 is much slower. In examples such as this, where evaluation of the log-likelihood is

 possible, this provides a better check on convergence than a criterion based on the
 changes in parameter estimates.

 2.6 EM estimation for quantitative trait data

 For simple qualitative or quantitative traits, were genotypes observable, estimation

 of penetrance parameters would also be primarily a matter of "counting". However,
 even in the simplest cases, explicit EM equations are not readily obtained. There
 may be no single statistic; the complete-data sufficient statistics may be functions

 of the genotypes Gi of every individual i. Consider, for example, the simplest
 possible model for a quantitative trait determined by alleles at a single diallelic

 locus. (For example, the trait value might be an enzyme level.) The phenotypic
 value is assumed to have a Gaussian distribution, with mean depending on the

 genotype at the locus, and variance o2. The penetrance parameters are the three
 genotypic means, and the residual variance a2. The only additional parameter is
 the allele frequency at determining the trait-locus genotype frequencies. The model

 for the phenotype Yi of individual i having genotype Gi may be specified as

 (2.14) Yi = u(Gi) + Ei.

 If sampling unrelated individuals, then the Yi are independent and identically
 distributed and this is a simple mixture estimation problem, which can be addressed

 by EM (see for example, Redner and Walker (1984)). Of greater interest, in the
 context of genetic analysis, are data observed for members of a pedigree structure.

 To implement an EM algorithm, we would need to estimate the conditional

 probabilities that each member of the pedigree is of each of the three genotypes,

 given current parameter values and the data Y. For related individuals, estimation

 of the conditional probabilities of genotypes, G, given the observed phenotypic data

 Y on the pedigree, is a complex computation equivalent to computation of the total
 likelihood Pr(Y). We return to this problem in section 7.4.

 Estimation for a genetically more complex model turns out to be simpler,

 statistically. We consider briefly the classical polygenic model, where discrete

 genotypes Gi are replaced by Gaussian random effects Zi, known as polygenic
 values. Rather than a single-locus trait, we are now considering a phenotype such

 as height, probably influenced by a very large number of genes throughout the
 genome. The genotype configuration G becomes a vector of polygenic values z,

 and sums become integrals. The founder probabilities Pr(Gi) of equation (1.4) are
 replaced by N(O, o,2) population densities for Zi, where the parameter U2 is known

 as the additive genetic variance. The transmission probabilities Pr(GjIGMj,GF)
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 26 CHAPTER 2. LIKELIHOOD, ESTIMATION AND TESTING

 (equation (1.4)) become a transmission density for Zi given ZMi = ZMi and
 ZF = ZFi:

 (2.15) = (ZMi + ZF) +qi
 2

 where the Ti are independent, identically distributed segregation residuals, ri
 N(0, v.), independent of ZM. and ZFi. If Zmi and ZFi are uncorrelated, then

 var(Zi) = (1/4)(var(ZM ) +var(ZFi)) + v,,

 so to maintain constant population variance a2 of the Zi over the generations
 v- = /2. The transmission equation (2.15) for the offspring value Zi, given
 the parental values, may then be rewritten as Zi N((ZMi + ZFJ)/2, u2/2). The
 joint probability of Z is Gaussian, with mean 0 and variance-covariance matrix
 U2A, where A is a matrix determined by the pedigree structure, and known as
 the numerator-relationship-matrix (Henderson, 1976). In fact, A is the matrix
 2'T, where the (i, k) component 1i,k is the coefficient of kinship 4(i,k) between
 individuals i and k (section 3.2).

 The simplest penetrance model for a quantitative phenotypic value Yi of
 individual i is that it is a direct reflection of the polygenic value Zi. Ignoring
 all other possible fixed/random effects, the penetrances Pr(Yi I Gi) become the
 density Yi - N(zi, a2), given Zi = zi, or

 (2.16) Y = Zj + ci.

 The variance a2 of the independent, identically distributed residuals ci is known as
 the residual or (individual) environmental variance. In this simplest version of the

 model, there are just two parameters, ae and aa. In a pedigree (or a collection of
 pedigrees), suppose there are a total of ntot individuals, and that for nobs of them a
 value of the quantitative phenotype is observed. The complete-data log-likelihood
 is

 log Pr(Y = y, Z = z) = log Pr(Y = y I Z = z) + log Pr(Z = z)

 = -2 (nobs log(27rca) ? (Y-z) -

 + ntot log(2ira 2) + log(jAI) + z'A-lz/a 2)

 This is again of exponential family form, with two complete-data sufficient statistics
 (y - z)'(y - z) and z'A-1z, which leads to EM equations

 a2e = E 2 - ((Y-Z)'(Y - Z) I Y = y)/n,b8

 (2.17) a2* = E 202 (Z'A-1Z I Y = Y)/ntot.

 If EU2,0J2 (Z I Y = y) = a and Var,2,,2 (Z I Y = y) = V, the equations reduce to

 a -= (nobs)1((y - a)'(y - a) + tr(V))

 a2* = (nt)-1(a'A-1a + tr(VA-1)).
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 2.6. EM ESTIMATION FOR QUANTITATIVE TRAIT DATA 27

 We do not pursue this further here. There is a large literature on the use of EM in
 polygenic models, particularly in plant and animal breeding. For additional details
 in the context of simple models on complex pedigrees, see Thompson and Shaw

 (1990; 1992). For more general work in this area, see the references therein. The
 point of this example is to show that, even in an exponential family of full rank, the
 natural sufficient statistics may not be linear functions of latent genotypic counts

 or values. Estimation of a = EU2,92 (Z I Y = y) is straightforward but insufficient.
 Since the sufficient statistics are quadratic functions of Z, the conditional variances
 V are also needed to implement the EM equations.
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 Chapter 3

 Gene Identity by Descent

 3.1 Kinship and inbreeding coefficients

 A gene, as opposed to an allele or a locus, is the DNA segment that is copied from
 parents to offspring. Underlying the patterns of phenotypes observed on related
 individuals are the genotypes, but underlying the genotypes are the patterns of gene
 identity by descent. Phenotypes of relatives are similar because they have similar

 genotypes and may share a common environment. Genotypes are similar because
 relatives share genes that are identical by descent (ibd) identical copies of a gene

 segregating from a common ancestor within the defined pedigree. Although for
 some microsatellite DNA markers mutation rates are non-negligible (section 1.1),

 for simplicity we disregard mutation throughout this book. In this case, genes
 that are ibd must be of the same allelic type, while genes that are not ibd are of
 independent allelic types.

 Gene identity by descent is defined only within the context of a given pedigree
 structure. A pedigree specifies the two parents of every non-founder individual. A

 founder has neither parent specified, and by definition the genes in founders are
 not ibd. It will often be convenient if a pedigree is ordered in such a way that every
 individual is preceded in the listing by his parents; clearly, this is always possible.

 Mendel's First Law (section 1.2) states that:

 a diploid individual receives at any given locus a copy of a randomly

 chosen one of the two genes in his father and (independently) a copy of
 a randomly chosen one of the two genes in his mother, and will pass on

 a copy of a randomly and independently chosen one of these two genes
 to each of his offspring.

 This simple law leads to complex patterns of gene identity on an extended pedigree,
 due to the huge number of alternative events; 2m for m meioses, at each locus. The
 segregating genes determine the patterns of gene identity by descent on the pedigree,
 and hence the patterns of similarity among relatives.

 We start with coefficients of inbreeding and kinship, since these provide an
 introduction to the ideas of gene identity by descent, to alternative computational

 29
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 30 CHAPTER 3. GENE IDENTITY BY DESCENT

 131 132

 234 232 ..1233 235

 333 33 331 334

 432 431

 FIGURE 3.1. An example pedigree. The structure is the same as that of Figure 1.1 of section 1.3.
 The four individuals shaded grey are bilateral ancestors of the final individual

 approaches, and to Monte Carlo estimation of expectations. Kinship and
 inbreeding are best thought of as relationships between gametes rather than between

 individuals. The coefficient of kinship between two individuals B and C, O(B, C),
 is the probability that homologous genes on gametes segregating from B and from
 C are ibd, while the inbreeding coefficient of an individual B, fB, is the probability
 that homologous genes on the two gametes uniting to form individual B are ibd.
 Hence

 fB = ,(MB, FB)

 where MB and FB are the parents of B. An individual is inbred if his parents are
 related. He is autozygous at a given locus if, at that locus, his two genes are ibd. His
 inbreeding coefficient is the prior probability of this event: that is, the probability
 based only on the pedigree structure.

 3.2 Methods of computation

 There are several methods for computing kinship and inbreeding coefficients.
 The early approach of path-counting (Wright, 1922) simply enumerates all the
 possibilities in an efficient way. In order for the two genes within an individual
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 3.2. METHODS OF COMPUTATION 31

 B to be ibd, they must descend from a common ancestor A of his parents. The

 probability that genes segregating from A in two distinct meioses are ibd is 1 if A has

 two ibd genes and 1/2 otherwise, or overall fA.1 + (1 - fA).(1/2) = (1/2)(1 + fA).
 If these two genes from A to two distinct offspring are ibd, then the probability
 the same genes descend to B gains a factor of 1/2 at each successive meiosis. A

 path, PA, is defined as a sequence of individuals from B ascending to a common

 ancestor A of his two parents, and descending to B again via a disjoint sequence

 of individuals. Each such path contributes a term 2-(mM?mF+1) (1 + fA) to the
 inbreeding coefficient fB, where mM and mF are the number of meioses in the

 path from A to B's mother M and father F respectively. (One may count the two
 meioses from M and F to B, or the two meioses from A to his two offspring, but
 not both.) Now, at a single locus, the genes of B can be ibd via at most one such
 path; the paths provide a set of mutually exclusive and exhaustive events leading
 to B having two ibd genes. Thus the inbreeding coefficient of B is

 (3.1) fB = E E 2-(mM(PA)+mF(PA)+1) (1 + fA).
 A 'PA

 For example, for the offspring of a first cousin marriage, there are 2 paths, one
 via each of the two grandparents shared by his parents, each having mM = mF = 2,
 providing an inbreeding coefficient of 2 x 2-5 = 1/16. As a more complex example,
 consider again the pedigree of Figure 1.1 in section 1.3. The pedigree is shown again
 in Figure 3.1, with the common ancestors of the parents of the final individual

 shaded grey. The final individual is the offspring of a first cousin marriage, but so
 also is each of his parents. Here there are two paths via his great-grandparents,
 each having mM = mF = 2 as for the simple cousin marriage, and 3 paths via each
 of his parents' two shared great-grandparents, each with mM = mF = 3, providing
 a total inbreeding coefficient of 2 x 2-5 + 2 x 3 x 2-7 = 7/64.

 Although the path-counting method is the simplest for small pedigrees, it
 becomes impractical on very large and complex pedigrees. For example, in a

 segment of a Hutterite pedigree considered by Thompson and Morgan (1989), there
 are over 1000 ancestral paths connecting the two parents of one individual. Other
 approaches to computation of inbreeding and kinship follow from equations based on
 the properties of Mendelian segregation. We use the meiosis indicators introduced
 in section 1.2 and consider the kinship coefficient b(B, C) between two individuals
 B and C. Provided B is not an ancestor of C, we may condition on the segregation
 S from B, where

 Pr(S = 0) = Pr(S = 1) =

 If S = 0, the segregating gene is B's maternal gene; that is, a gene from the mother
 of B. If S = 1, the gene is B's paternal gene. Thus we obtain immediately

 O(BB,C) = (MB,C)P(S =0) + O(FB,C)P(S = 1)

 (3.2) = (o (MB, C) + (FB, C))/2

 where MB and FB are the mother and the father of B. Also, from the definition,

 we have symmetry: 4'(B, C) = 0 (C, B). Thus the only additional equation needed
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 32 CHAPTER 3. GENE IDENTITY BY DESCENT

 is for the case B = C. In this case, we must consider two independent segregations
 from B, Si and S2:

 Pr(Si = S2) = Pr(S1 0 S2)

 If S1 = S2, the segregating genes are ibd. If Sl $ S2, the genes comprise both the
 maternal and paternal genes of B. Thus

 +(B,B) = P(S1= S2) + Oi/(MB,FB)P(SI # 52)

 = (1 + (MB, FB))/2.

 Together with the boundary conditions

 4(B B) = 2 for any founder B,

 and 4(B, C) = 0 if B is a founder not an ancestor of C,

 these equations determine the function V)(.) on the pedigree.
 A recursive algorithm based on these equations is very easily implemented, and

 works well even on large and complex pedigrees. However, it is not necessarily
 computationally efficient; the same expansion may be repeated many times. In
 principle, this can be avoided, by saving ' (B, C), for key pairs of individuals (B, C)
 in the ancestry of the pedigree, but the simplicity of the method is then lost. An

 alternative way to implement these equations is via a top-down sequential method,
 computing kinship coefficients between all pairs of ancestors arriving finally at the

 descendant individuals of interest. This is computationally trivial, but expensive
 on store. All computation is a trade-off between time and store.

 3.3 Data on inbred individuals

 Kinship and inbreeding coefficients measure only ibd between two gametes, at a
 single locus. However, this suffices for a consideration of data on unrelated inbred

 individuals. At a single locus, with alleles A1, . . . , Ak, having population frequencies
 q1,. . , qk , an individual having two ibd genes has genotype AjAj with probability
 qj, while an individual who is not autozygous at this locus has genotype probabilities
 of Hardy-Weinberg form (section 2.3). Thus an individual who has inbreeding
 coefficient f has genotype probabilities

 Pr(AjAj) = qjf + q2(1-f)

 = qj(qj + f ( - qj)), j = 1, ...,k
 (3.3) Pr(AjA,) = 2(1 - f)qjql, 1 < j < 1 < k.

 Since an individual who is autozygous at a particular locus must be homozygous
 at that locus, inbreeding is of particular interest in the study of rare recessive
 traits. If the recessive allele has frequency q, the probability that an individual
 with inbreeding coefficient f is affected is q(q + f (1 - q)). If the population consists
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 3.3. DATA ON INBRED INDIVIDUALS 33

 of a proportion at of individuals with inbreeding coefficient fi, then the overall
 proportion of affected individuals is

 Eaj(q(q +fi(1 -q))) =q(q +f(1 -q))

 where f = >3 aifi is the mean inbreeding coefficient in the population, or
 the expected inbreeding coefficient of an individual randomly chosen from the
 population. The conditional probability that an affected individual derives from

 the group with inbreeding coefficient fi is

 ai(q + fi(l - q))

 q+f(l-q)

 The probability that an affected individual with inbreeding coefficient fi is
 autozygous at this locus is

 fi

 q + fi(l - q)

 while the overall probability an affected individual is autozygous at this locus is

 (3.4) q f(1q 3.4) ~~~~~~q + f (1 - q)'
 Note that for a very rare recessive trait (q 0), a high proportion of the

 affected individuals will have non-zero inbreeding coefficients. Indeed, the groups i
 then contribute to the affected individuals in the same proportions aifi/f as they
 contribute to the mean population inbreeding. Moreover, a high proportion of the
 affected individuals are not only inbred, but in fact autozygous at the locus in
 question. We return to these probabilities in section 4.6.

 In a population in which the mean inbreeding coefficient is f, the genotype
 frequencies are given by equation (3.3). There are two points to note about
 this homozygote excess and heterozygote deficiency, relative to Hardy-Weinberg
 proportions. The first is that these are frequencies in an infinite population.
 In a finite population, individuals of necessity marry their relatives, and allele
 frequencies change over time. Whether or not there is a homozygote excess, relative
 to Hardy-Weinberg proportions with the current allele frequencies, depends on
 whether individuals are, on average, marrying an individual who is more or less
 closely related to them than is a randomly chosen member of the population.
 Second, the homozygote excess due to inbreeding is a particular special case of
 the homozygote excess due to subdivision of a population; inbreeding is a form
 of subdivision. However, under the inbreeding scenario, there is no differentiation
 among alleles. Under subdivision, different alleles may show differing patterns of
 variation in frequency among subdivisions. This leads to genotype frequencies in
 which each homozygote shows an excess frequency, but in an amount dependent on
 the variation of the frequency of that allele among subdivisions. Although in total
 there is a heterozygote deficiency, patterns of covariation of allele frequency may
 lead to increased frequencies of some heterozygote genotypes (Weir, 1996).
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 34 CHAPTER 3. GENE IDENTITY BY DESCENT

 As an additional example of the use of the EM algorithm (section 2.4) to estimate
 parameters underlying genotype frequencies, we consider estimation of f under the
 model of equation (3.3). Suppose that a random sample of individuals is taken
 from the population, and that there are nil individuals of genotype AjAl for j < 1.
 Then the likelihood for the parameters q = (ql,.. ., qk) and f is

 L(q,f) = Pqf({jl})

 oc ll(qj(qj + f(1-qj )))nj fJl(2qjql(1 - f)) li
 j j3<

 Clearly, this is not an easy expression to maximize.

 Let Xj be the number of homozygous AjAj individuals in the sample who have
 two identical-by-descent (ibd) genes at this locus. With Xj as the latent variables,
 the complete-data likelihood is

 L*(q,f) Pq,f ({f7ji }, {Xj })

 fl2nf3j-Xj (2q3q)njifT(l _ f)n-T

 j j<l

 where T = Ej Xj. Let mj = 2njj + El<j nij + Z,>j nj3 be the number of Aj
 alleles observed in the sample. Then the complete-data log-likelihood reduces to

 ?*(q,f) = logPqjf({rnjl},{Xj}))

 (3.5) = const + Z(mj-Xj) logqj + Tlogf + (n-T) log(1-f).

 The complete-data log-likelihood (3.5) is thus linear in the functions of the latent
 variables Xj and T. Computation of the expected complete-data log-likelihood
 requires only

 Eq,f(Xj | {nji}) f+qn(j-f)

 using equation (3.4). Moreover, if Xj were observed, the MLEs based on (3.5)
 would be f = T/n and qj = (mj - xj)/ Z(i - xi). An EM algorithm for this
 problem is thus to iterate:

 E - step: xj = fnjj/(f + qj(1-f)), t = j
 M-step: qj = (mj-xj)/ZE,(mi -xl), f = t/n.

 As in the examples of section 2.5, the algorithm is easily implemented, and converges
 quickly.

 3.4 Multi-gamete kinship and gene ibd

 Kinship and inbreeding provide results only concerning a pair of genes, and thus a
 single genotype. Analysis even of data on a pair of related individuals, at a single
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 3.4. MULTI-GAMETE KINSHIP AND GENE IBD 35

 locus, requires consideration of four genes. An important extension to section 3.2
 was made by Karigl (1981), who considered the probability of simultaneous identity
 by descent, 4 (Bl, ..., Bm), of m genes segregating from a set of (not necessarily
 distinct) individuals B1, B2, ..., Bin. As in equation (3.2), if B1 is not an ancestor
 of any of B2, ..., Bm, conditioning on the segregation from B1 gives

 (3.6) (B1IB27 i.. = 2(-b(MBl,B2i...jBm) + (FB1?B2, Bn)

 where MB1 and FB1 are the parents of individual B1. The symmetry of the
 definition provides that we may collect the arguments for some B1 who is not
 an ancestor of any of the others to the first v arguments of 4. Then, considering
 the v independent segregations from B1, either the segregating gene is the same in
 every case, being a random gene from B1, or both the maternal and the paternal
 genes of B1 are among the v genes. Since

 Pr(Sj = S2 = ... = St) = 2-v+1,

 we obtain

 (Bi... IB1,~B2 ... Bm) = 2-v+1 (7(Bi,B2, ...,Bm) +

 (2v--1) W(MB1, FB1, B2, ..., Bm))

 = 2-V ((MBJ,B2,...,Bm) + 0 (FBI,B2,...,Bm)

 (3.7) + (2V - 2) (MB1,FB1,B2, ... ,Bm)).

 Together with symmetry and boundary conditions, these equations determine the
 multiple kinship coefficients on any pedigree. Note that the number of arguments
 of m is never increased by recursion, although the number of terms may be doubled
 at each step. Practical implementation can therefore be problematic on a'large
 multi-generation pedigree if the initial number m of genes or individuals considered
 is more than about 7.

 The m-gamete kinship coefficients can be used to determine probabilities of
 patterns of gene ibd among a set of m genes. First, however, a specification of such
 patterns (gene ibd states) is needed. Among a set of genes in given individuals, a
 gene ibd state is a partition of the genes into subsets that are ibd. We denote such
 a pattern by J, and refer to it as the pattern of gene identity by descent among
 the individuals. A partition of m ordered genes may be specified by a set of m
 integers as follows. Let k1 = 1. Suppose genes 1,2,... , r have been assigned v
 distinct labels kl,... , kr. If gene r + 1 is ibd to a previous gene 1, k,+ 1 = kl.
 Otherwise, kr?1 = v + 1. (For the case m = 4, this labeling is shown in Table 3.1.)
 As m increases, the number of possible states of gene ibd increases rapidly. For
 the 12 genes of 6 individuals, there are more than 4 million gene identity states
 (partitions of 12 ordered objects). However, for the analysis of phenotypic data
 on individuals, one need not distinguish the paternal and maternal genes of an
 individual. The interchange of labels on the two genes within each member of any
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 36 CHAPTER 3. GENE IDENTITY BY DESCENT

 subset of the individuals groups the ibd states into genotypically distinct classes of
 states. For the case of two individuals, this grouping is also shown in Table 3.1.
 This grouping substantially decreases the number of patterns of gene ibd that must

 be considered. For example, for six individuals there are only just over 198,000
 genotypically distinct classes of states (Thompson, 1974). Although this is not a
 small number, with modern computers and an efficient indexing of state classes it is
 not impossible to consider all the possible state classes given data on 6 individuals.

 Returning to the relationship between multi-gamete kinship and gene ibd state
 probabilities, consider any specified (detailed or grouped) ibd state among the
 genes of a set of individuals. For example, for five individuals (B1, B2, B3, B4, B5)

 the state (1,2,1,3,4,4,2,4,2,5). This state contributes 0.25 to Vb(B1,B2), 0.5
 to b(B3,B4) and 0.125 to 0 (B1, B4, B5). Conversely, any multi-gamete kinship
 coefficient among individuals, say 0 (B1, . . . , Bm) can be written as a weighted sum
 of ibd state probabilities:

 '(B1,. . .,Bin) = E Pr(segregating genes ibd I J)Pr(J).
 J

 If multi-gamete kinship coefficients are computed for all subsets of the individuals

 of interest, the linear equations may be inverted to give the ibd state probabilities,
 Pr(J) among the genes of the individuals. Karigl (1981) was interested primarily
 in the determination of the probabilities of patterns of ibd among the four genes of

 two individuals, at a single genetic locus. He gives details of the equations for this
 case.

 3.5 Patterns of gene ibd in pairs of individuals

 Among the four genes of two individuals at a single autosomal locus, there are
 15 states of gene identity (Cotterman, 1974). These are shown in Table 3.1, and
 correspond simply to the number of partitions of the four genes into classes of genes
 that are ibd. However, there are only 9 groups of genotypically distinct classes of
 states, since with regard to genotypes the maternal and paternal origins of genes

 are irrelevant, so the identities of the two genes within each individual can be
 interchanged. For the case of two individuals, the state classes can be characterized

 by specifying the autozygous individual(s), and the number of genes shared ibd
 between the two individuals (Table 3.1).

 For two non-inbred diploid individuals, there are only three possible

 genotypically distinct gene identity states at a single autosomal locus. That is, the
 individuals can share neither of their genes ibd, or one, or both. These events have

 probabilities '. = (ro, ri1, rC2) say, (so + rl + '2 = 1), determined by the pedigree.
 Individuals are related if rO < 1. Each relationship may thus be represented
 by a point in an equilateral triangle of unit height, the vertices corresponding to

 unrelated pairs (ro = 1), parent-offspring (ril = 1), and the identity (monozygous
 twin) relationship (r12 = 1)- (Care should be taken in applying the standard
 equations to monozygous twins, since they result from a single maternal and a
 single paternal meiosis.) The triangle representation is shown in Figure 3.2 and
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 3.5. PATTERNS OF GENE IBD IN PAIRS OF INDIVIDUALS 37

 ibd pattern ibd label ibd group state description

 B1 B2 individuals genes

 p m p m autozygous shared

 * . d * 1 1 1 1 1 1 1 1 B1,B2 4 genes ibd

 * 0 0 0 1 1 1 2 1 1 1 2 B1 3 genes ibd
 0 0 o * 1121

 @ 0 * * 1 2 1 1 1 2 1 1 B2 3 genes ibd
 @0 00 1222

 * * 0 0 1 1 2 2 1 1 2 2 B1,B2 none

 ** ? t 1123 1123 B1 none
 . 0 t t 1 2 3 3 1 2 3 3 B2 none
 * 0 * o 1 2 1 2 1 2 1 2 none 2 genes
 *o o * 1 2 2 1 shared

 * 0 . t 1 2 1 3 1 2 1 3 none I gene
 . 0 t . 1 2 3 1 shared
 0 0 ? t 1223
 . ? t o 1232
 . ? t * 1 2 3 4 1 2 3 4 none none

 TABLE 3.1. States of gene ibd among the four genes of two individuals

 the values of X, for some standard relationships are give in Table 3.2. The kinship
 coefficient is the probability that homologous genes segregating from two individuals

 are identical by descent and thus b = (2 K2 + r,i)/4. Lines of constant kinship are

 orthogonal to the line rl = 0. Sibs, with X = (1/4,1/2,1/4) have the same kinship
 coefficient as a parent-offspring relationship. Half-sibs, with i' = (1/2,1/2, 0) have
 the same kinship coefficient as double-first-cousins (,' = (9/16,3/8,1/16)).

 Pairwise relationship Ko Kl K2 i
 Unrelated 1.00 0 0 0
 Parent-offspring 0 1.00 0 0.25

 Monozygous twin 0 0 1.00 0.50

 Full Sib 0.25 0.50 0.25 0.25

 Half sib, grandparent, aunt 0.50 0.50 0.00 0.125

 First cousin 0.75 0.25 0 0.0625

 Double first cousin 0.5625 0.375 0.0625 0.125

 Quadruple half first cousin 0.5312 0.4375 0.0312 0.125

 TABLE 3.2. Values of X., and kinship coefficient b, for some standard relationships between two
 non-inbred individuals

 While each relationship determines a point K, the converse is not true. Several
 relationships give the same probabilities .; the simplest example is the three

 pairwise relationships grandparent-grandchild, half-sibs, and aunt-niece, all of

 which have X = (1/2,1/2, 0). Moreover, some points in the triangle are not (even in
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 FIGURE 3.2. The relationship triangle for non-inbred relatives

 the limit) attainable by any relationship. In fact, it can be shown that 2 > 4'coK2
 (Thompson, 1986). This result follows from the fact that, for non-inbred individuals

 X = (1/4)(bMM +?FF + ?MF + FM)

 (3.8) and 'K2 = (PMMOFF + PMFPFM)

 where the subscripted kinship coefficients are those between a parent (mother (M)
 or father (F)) of one individual, and a parent of the other. Then the arithmetic-
 geometric mean inequality gives

 4',2 ?< (MM + OFF) + (PMF + 'FM)

 < (MM + OFF + OMF + Y FM )

 (4X)2 = (j1 + 2K2)2

 = 2 + 4r'2(r;l + K2) or

 482/iO= 4I2(1-(1K + K2)) ? C1.

 In order for equality to hold in this inequality, one pair of the crossparental kinship
 coefficients must be 0, and the other pair equal. Such relationships include full sibs

 (OMM = FF = 1/4, /MF = FM = 0) and double-cousins of any degree v, for which
 oMM = OFF = (1/2) , OMF = FM-= 0 or kMF = OFM = (1/2) +, VMM = OFF =
 0. These relationships give values of rX falling on the boundary parabola.

 It is possible for the mother and father of each individual to be related to both
 the mother and the father of the other, without either individual being inbred.
 That is, all four of the cross-parental kinship coefficients in the above equation may
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 FIGURE 3.3. The relationship of quadruple-half-first-cousins

 be non-zero. The simplest example is that of quadruple-half-first-cousins, shown in
 Figure 3.3. For this relationship, the mother and the father of each individual is a

 half-sib of both the mother and the father of the other, so OMM = OFF = OMF =
 )FM = (1/8). Hence, using equation (3.8), r2 = 1/32, ', = 7/16, r.0 = 17/32 and
 0 = 1/8. The point in the triangle lies midway between that for half-sibs and for
 double-first-cousins, which also each have b = 1/8.

 More details of the material of this section, and references to earlier work, can
 be found in Chapter 2 of Thompson (1986).

 3.6 Observations on related individuals

 Phenotypic similarities among relatives result from the genes they share ibd. Among
 an ordered set of genes, a partition of the set may be used to specify which subsets
 of the genes are ibd (section 3.4). Again we denote such a pattern of gene ibd by J.
 In section 1.3, the meiosis indicators were defined (equations (1.2) and (1.3)), and

 it was seen how the meiosis indicators S.j, determine descent of founder genes, and
 patterns of gene identity by descent, at any given locus j. Thus, the passage of genes
 in pedigrees provides the connection between observable genetic characteristics and

 the pedigree structure, whether we are estimating relationships from genetic data,
 estimating the genetic basis of traits knowing the pedigree, or inferring the ancestry
 and descent of particular genes, knowing both the genetic model and the data
 (section 1.4).

 In particular, we consider a currently observed set of individuals, and the pattern,
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 FIGURE 3.4. Meiosis indicators S.,j determine descent of founder genes, and patterns of gene
 identity by descent, at any given locus j: see Figure 1.2

 J, of genes ibd among them, at a single locus. We therefore drop the locus index j,

 and write S = {Si; i = 1, ..., m} (equation (1.1)), for the m meioses of the pedigree.
 The example of Figure 1.2 is shown again in Figure 3.4. The meiosis indicators

 shown under each individual are for the paternal and for the maternal meiosis to

 that individual, respectively. Then S determines the pattern, J, of genes ibd in this

 currently observed set of individuals; J = J(S). The probability of any phenotypic

 data Y (i.e. observed characteristics of the individuals) depends on S only through

 J(S), and so

 (3.9) Pr(Y) = E Pr(Y S) Pr(S)
 s

 - E Pr(Y | J(S)) Pr(S)
 s

 = Z Pr(Y J) Pr(J).

 Equation (3.9) may be compared with equation (1.5) of Chapter 1. In equation

 (1.5) the latent variables were the genotypes Gi of individuals, whereas here they
 are the meiosis indicators. In both cases, the form of the likelihood is that of a

 latent variable problem (section 2.4), and either may be the more convenient for
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 3.6. OBSERVATIONS ON RELATED INDIVIDUALS 41

 likelihood computation and inference (Chapter 6).

 In partitioning the likelihood as in equation (3.9), the "genetic model" is

 separated from the effects of genealogical and genetic structure. The probability

 of a set of meiosis indicators S at a single locus is trivial; the components are

 independent, each 0 or 1 with probability 1/2. The probability of a given pattern
 J(S) depends on the genealogical relationship among the observed individuals: in

 principle it may be computed by the methods of sections 3.4 or 3.8. Given the

 gene identity pattern, J(S), the probability of data depends on the different types
 of genes, their frequencies, and how they affect observable phenotypes.

 Now consider the probability Pr(Y I J(S)), for a specified pattern of gene
 ibd among the observed individuals. The probability any distinct gene, k, is of

 allelic type a(k) is the population frequency, qa(k), of the allele. Distinct genes k
 have independent allelic types. Thus, Pr(Y I J(S)) is the sum over all possible
 assignments A of allelic types to genes of the product of allele frequencies qa(k) of
 assigned alleles a(k):

 (3.10) Pr(Y I J(S)) = Z lqa(k)
 A k

 This equation was given by Thompson (1974) who gave an example of ABO blood

 types on three individuals. The special case of two individuals (9 states J) is

 discussed in Chapter 2 of Thompson (1986).

 In general, efficient determination of all allocations A(j) at locus j compatible

 with data Y1j is straightforward for genotypic data (for example, DNA marker
 phenotypes). An algorithm for this determination of is given by Kruglyak

 et al. (1996). The implementation we use is due to Simon Heath (personal
 communication) and is described in more detail by Thompson and Heath (1999).

 We use the same example pedigree, with the values of S.,j given in Figure 1.2,
 and assume five individuals observed with the genotypes shown in Figure 3.5(a).
 The method rests first on the fact that only founder genes having copies in

 observed individuals are constrained in allelic type: in our example, the genes

 labeled {1, 2,4, 5, 8, 10}. Further two genes constrain each other's allelic type only

 when both are present in an observed individual. The gene graph (Figure 3.5(b))

 connects all such pairs of genes. Allocation of allelic types may be considered

 separately for each component subgraph of connected genes. In our example, the

 genes {1, 5} may be considered independently of {2, 4, 8, 10}. This assignment is

 readily accomplished, even on a much larger example. For given S.j, there are
 in general only 2, 1 or 0 possible assignments of allelic types to the genes of a

 component subgraph. For our example, there are two possible assignments for

 the first component and one for the second: (a(l),a(5)) = (A,C) or (C,A)
 and (a(2),a(4),a(8),a(10)) = (C,D,C,B). The algorithm can in principle be
 generalized to more complex phenotypes, using the conditional independence
 structure of the gene graph (Figure 3.5(b)), but the procedure becomes far more

 computationally intensive.

 For completeness, and as an example of the above general formula, consider again

 the case of a non-inbred pair of relatives. There are then three ibd states Jo, Ji and
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 FIGURE 3.5. Determination of probabilities Pr(Y.,j I S.,j). The gene descent pattern is assumed
 to be that of Figure 1.2, and the pairs of genes are shown, rather than the individuals. Five
 individuals, shown as dashed circles, are assumed to be observed, with marker genotypes as
 indicated: see text for details. (a) Only genes present in observed individuals are constrained
 in type. (b) Two genes in a single observed individual are jointly constrained

 J2, with probabilities o 7, Ki, and K2, these being determined by the relationship R
 between the individuals (section 3.5). The state Jk denotes that k genes are shared

 ibd between the two individuals. Suppose at a given locus the ordered genotypes of
 the pair are (G1, G2). Then the analogue of equation (3.9) is

 Pr(Gi, G2; R) = Ko(R)Pr(G1, G2; Jo) + K 1 (R)Pr(Gi, G2; J1)
 + K2(R)Pr(G1,G2; J2 ).

 Now, Pr(Gi,G2;J2) = Pr(G1), the population frequency of the genotype, if
 G1 = G2, and 0 otherwise. This is the probability for a pair of monozygous twins.

 Also, Pr(G1, G2; Jo) = Pr(G1)Pr(G2), the probability for an unrelated pair of
 relatives. Finally, Pr(G1, G2; J1) is the probability for a parent-offspring pair; these
 probabilities were given in Table 2.1 (section 2.3). For a pair of relatives, in most
 cases equation (3.10) take form too trivial to be illuminating. The one non-trivial
 case is Pr(G1 = A1A2, G2 = A1A2; J1). Here the ibd gene may be either the A1 or
 the A2 allele; there are two feasible allocations A of allelic types to the three distinct

 genes in the two individuals (A1, A2, A1) or (A1, A2, A2) giving a total probability

 P1P2P1 + P1P2P2 = PlP2(Pl + P2) as given in the Table 2.1.
 Thus, to obtain the probability of genotypes (and hence of phenotypes) for any

 pair of non-inbred relatives, it is enough to know the probabilities for monozygous-
 twin, parent-offspring, and unrelated pairs. For a general pair of relatives, however,
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 Gene ibd state Prior (pedigree) probability

 for two sibs with (a) an aunt (b) a niece or half-sib

 Sibs sharing 2 ibd
 1 2 1 2 1 3 1/8 1/8

 1 2 1 2 34 1/8 1/8

 Sibs sharing 1 ibd

 12 13 14 1/8 1/8

 1 2 1 3 23 1/16 0

 1 2 1 3 24 1/16 1/8

 1 2 1 3 34 1/16 1/8

 1 2 1 3 45 3/16 1/8

 Sibs sharing 0 ibd

 12 34 13 1/16 0

 1 2 34 1 5 1/16 1/8

 1 2 34 35 1/16 1/8
 12 34 56 1/16 0

 TABLE 3.3. Gene ibd state probabilities at a single locus for a pair of sisters with an aunt, niece,
 or half-sib. The states are given in the reduced genotypic state-class form, in which the paternal
 and maternal genes of the three individuals are not distinguished

 the nine genotypically distinct ibd patterns of Table 3.1 are required. The

 probabilities of the states must be computed (see, for example, Karigl (1981)),
 and also the probabilities of genotypes under each ibd state. Again, the latter are

 special cases of equation (3.10), and are given by Thompson (1986).

 Finally, in this section, note that joint analysis of data on a set of relatives is
 always more powerful than pairwise analysis. A simple example which derives
 from an actual study is that of a pair of full sibs and their aunt or niece

 (Browning and Thompson, 1999). Due to the symmetry of the pairwise aunt-
 niece relationship, pairwise analysis cannot distinguish these relationships; nor
 distinguish the possibility that the third individual is a half-sister to the pair of
 sibs. However, two sibs and a aunt can carry six distinct genes at a locus, but sibs

 with a niece or half-sib cannot. The probabilities of the ibd states among the three
 individuals at a single locus are shown in Table 3.3. Loci at which the two sibs share

 both their genes ibd give the same probabilities of sharing with the third individual

 under the three possibilities of aunt, niece or half-sib. However, the other state
 probabilities differ, with the greatest power to distinguish an aunt from a niece or
 half-sib coming from those loci at which the full sibs do not share any genes ibd.
 Note that data at unlinked loci remains insufficient to distinguish the possibilities

 that the third individual is a niece or half-sister. As will be seen in section 4.5,

 data at linked loci results in identifiability of these two alternatives.
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 3.7 Monte Carlo estimation of expectations

 Although the methods of section 3.4 are easily implemented, where large numbers
 of individuals are considered jointly computation may become impractical or even
 infeasible. Where exact probabilities cannot be computed, Monte Carlo estimation
 is an alternative. We use this section to introduce some important ideas in the
 Monte Carlo estimation of sums, integrals, or expectations. We shall use these
 methods to estimate probabilities of gene ibd patterns in section 3.8. These methods
 will be important for Chapters 7 and 8. Since, in this section, the latent variables
 are general, we use the notation X instead of S.

 To estimate Ex g(x) the sum may be written as an expectation

 Eg(x) = E g(x) -Pr(X = x) Ep P(X)
 Pr(X =x) PX

 where P(-) is some distribution over X, the space of values of X. The distribution
 P(.) must assign positive probability to every value x of X for which g(x) > 0. If
 XM1).... X( N) are simulated from the distribution P(.),

 I kNP(x(,r))J ( 3 .1 1) N E (P ( X (r ) ))

 is an unbiased estimator of the sum Ex g(x). Of course, it may not be a very good
 estimator; in fact, it may be a very bad estimator. The art of Monte Carlo is finding
 good distributions to simulate from, and good ways of simulating from them, in
 order to get good estimators. A "good" estimator is one with small variance. Note
 this is not the standard statistical paradigm where parameters are estimated from
 data. In that case, variances are over (hypothetical) repetitions of the experiment
 or random process giving rise to the data. In Monte Carlo, the relevant variances
 are Monte Carlo variances.

 The simplest form of Monte Carlo is where we simulate independent, identically
 distributed realizations from some distribution P(.). Note that any sum of terms
 g(x) is an expectation of g*(X) = g(X)/P(X) with respect to the probability
 distribution P(.). The estimator (3.11) is then an average of terms g* (X), and, for
 independent realizations, the Monte Carlo variance of this estimator is

 N-1 (Ep((g* (X))2) - (Ep(g* (X)))2)

 or (Z (g*(x)2P(x)) - (g*(x)P(x))2)

 which, substutituting g*(x) = g(x)/P(x), is

 N-1 (z (9(X) )-_ (Zg(x)))
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 3.7. MONTE CARLO ESTIMATION OF EXPECTATIONS 45

 This may be estimated by the sample variance from the Monte Carlo:

 (N(N - 1))- (E (( N1)) (E ( (X))))

 or (N(N- 1)) (f ((X(T))) - N1 (, ((X(T)) )

 On pedigrees, the simplest distribution to simulate from is the prior distribution on
 genotypes, which is done by "gene dropping". Genes are assigned to the founders of

 the pedigree, segregation of genes down the pedigree is simulated, and the required
 statistics relating to the resultant current genes are computed. Such Monte Carlo

 estimates have been used by Edwards (1967) to estimate inbreeding coefficients, by

 MacCluer et al. (1986) to study the loss of genes in pedigrees of endangered species,
 and by Thompson et al. (1978) to study the potential power of a pedigree study.

 Using equation (3.11) is often ineffective. Methods of more effective simulation
 normally involve some form of importance sampling. Note that

 Ep(g*(X)) = ,g*(x) P(x)
 x

 = Zg* (x) P(x) P* (x)
 P* (x)

 (3.12) = Ep* (g* (X) P(( ))

 provided

 (3.13) P*(X) > 0 if g*(X)P(X) > 0.

 Thus realizations from P*(.) can be reweighted in order to estimate expectations
 under P. Where this is done in such a way that terms making larger contributions
 to the sum are realized with larger probabilities, this is importance sampling. Such
 sampling decreases the Monte Carlo variance of the estimator of the sum. The

 effectiveness of this approach depends on the choice of P*(.). It works best when
 the summand g*(X) P(X) is the "same shape" as P*(X), since then the variance
 of g*(X) P(X)/P*(X) is small. Ideally, if P*(X) oc g*(X)P(X), the variance of
 g*(X) P(X)/P*(X) is zero. However, this would mean

 P*(X) - g*(X)P(X) _ g(X)
 Ex g* (x) P(x) E-X g(x) '

 and if the denominator were known the Monte Carlo would be pointless!
 (Hammersley and Handscomb, 1964). The "same shape" criterion is most
 important in the tails of the distribution P*(.); it is a problem if P*(X) is very
 small when g*(X)P(X) is not, since then with low probability there will be very
 large terms in the estimator, and the Monte Carlo variance will be high. In order to
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 be able to use a given P*(.) we need first to be able to simulate from it, and second
 to compute g*(x)P(x)/P*(x) at the realized values x of X. This is sometimes far
 from straightforward, but we defer further discussion to Chapter 7.

 Note the difference between a "simulation study" and a "Monte Carlo analysis".
 Simulation studies are typically undertaken to discover empirically the distribution
 of a test statistic, or to assess the potential power of a study design. It involves
 the simulation of data random variables under a model of interest. In a Monte

 Carlo analysis, integrals, sums, or expectations are estimated by simulating random
 variables from some distribution, but the random variables are not normally the
 data random variables (often, the data are fixed) and the distribution is simply
 a tool to provide good estimates of the required expectations. In practice, the
 difference may be slight. The probability distribution we simulate from in a
 Monte Carlo estimation problem may often be closely related to the probability
 model underlying the data in a statistical problem. Conversely, the probability
 distribution we use in a simulation study could equally be a convenient tool,
 with reweighting used to adjust the realizations to the distribution of interest

 (equation (3.12)). In a Monte Carlo analysis we shall normally simulate conditional
 on fixed data, but in a simulation study it may sometimes also be desirable to

 simulate potential data conditional on partial data already obtained.

 3.8 Reduction of Monte Carlo variance

 The earliest use of Monte Carlo estimation on pedigrees was to estimate inbreeding
 coefficients. Before digital computers were available, Wright and McPhee (1925)
 traced random paths up pedigrees. By random choice of a male or female parent,
 one is realizing the ancestry of a particular allele, and hence realizations of the

 ibd status of, for example, the two genes within a current individual. Much
 more recently, using a computer, Edwards (1967) realized the descent of genes
 down pedigrees to estimate inbreeding coefficients. In effect, both Wright and
 McPhee (1925) and Edwards (1967) are realizing latent variables S. To estimate
 the probability of a specified ibd pattern, J*, define

 (3.14) g*(S) = 1 if J(S) = J*
 = 0 otherwise.

 Then the probability of the pattern J* is the expectation of g*(S) under the
 distribution of the random descent of genes in pedigrees.

 Any probability can be estimated as the expectation of an indicator variable in
 this way, but the method is often not very efficient, if only the probability of a
 particular J* is needed. On the other hand, if the probabilities of all ibd patterns
 among a given set of current genes are desired, this may be an effective approach;

 each realization of S contributes to some ibd pattern J(S). Different realizations
 S are, of course, independent, but the probabilities of different ibd patterns J
 estimated from the same set of realizations are dependent. It is important to
 recognize this dependence, but it is seldom a practical problem; multinomial
 covariances are small for large Monte Carlo samples.
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 3.8. REDUCTION OF MONTE CARLO VARIANCE 47

 Another key idea in effective Monte Carlo is "Rao-Blackwellization" of

 estimators. This procedure is named for the classic Rao-Blackwell Theorem in

 Statistics, whereby the statistical variance of an estimator g(X) is reduced by

 replacing it by its conditional expectation given some statistic T: if h(T) -

 E(g(X)IT),

 E(h(T)) = E(g(X)) and var(h(T)) < var(g(X)).

 Here we replace a part of the Monte Carlo by exact computation of a (conditional)

 probability or expectation. Formally, suppose the latent variables X are divided into

 two sets of components X = (XI, X2). As before, we wish to estimate Ep(g*(X)) =
 Ep(g*(Xi,X2)), where each of X1 and X2 is a (possibily vector) variable. If

 pairs (X(T), X(7)), i = 1,...,N are independently realized from the probability
 distribution P(-), one estimator is (see equation (3.11))

 N

 TN = N X, 9 (X (T), X2 T) . Tk 2

 Suppose it is possible to compute h(X1) = Ep(g*(XI, X2) X1). Another Monte
 Carlo estimator is then

 IN
 TN = N E h(X(<))

 Then the Monte Carlo variance of TN is easily shown to be no larger than that of Tk,
 and usually strictly smaller. Whether such Rao-Blackwellization is computationally

 effective depends on whether the increased cost of computing h(Xi) rather than

 g* (Xl, X2) is outweighed by the reduction in the number of the Monte Carlo
 realizations required to achieve a given precision. There is no general rule; see

 also section 9.4.

 Returning to realizations of gene descent in pedigrees, suppose we wished to
 estimate by Monte Carlo the inbreeding coefficient of the offspring of double first

 cousins: in fact, the answer is 0.125 (Table 3.2). If we use the estimator of
 equation (3.14), scoring 1 for each realization of S in which the final offspring
 individual is autozygous (has two ibd genes), the Monte Carlo variance is that of a

 binomial proportion for probability 1/8: (1/8)(7/8)(1/N) = 0.1094/N. If instead,
 we score ibd patterns in the double-first cousins, we have a trinomial realization

 of X, = (Ko, g1,, to) = (9/16,6/16,1/16). Then the inbreeding coefficient of the
 offspring is estimated by b = (2- + KIi)/4, which has Monte Carlo variance

 (1/4)var(i2) + (1/4)cov(i', i') + (1/16)var(4-) =
 N-1 (0.01465-0.00586 + 0.01465) = 0.02344/N

 which is almost 5 times smaller. In this case, SI corresponds to the meioses down to

 the double first cousins, and S2 to the meioses from the double-first-cousins to their
 offspring. The original estimator scores 1 or 0 depending on whether or not (Si, S2)

This content downloaded from 
������������128.95.104.109 on Sat, 19 Sep 2020 13:28:15 UTC������������� 

All use subject to https://about.jstor.org/terms



 48 CHAPTER 3. GENE IDENTITY BY DESCENT

 implies autozygosity of the offspring individual. The conditional expectation h(S1)

 is simply the probability of autozygosity in the final individual, given the particular
 S1 realized.

 As another example, consider estimation of the inbreeding coefficient of the
 final individual of the pedigree of Figure 3.1. The actual value is 7/64 =
 0.1094 (section 3.2), so using direct gene-drop, the Monte-Carlo standard error

 is (7/64)(57/64)/N= 0.3121/VN. Alternatively, we may use Monte Carlo only
 to the parents of the individual. In this case, there are nine possible states of gene
 ibd among four genes of these two parent individuals (Table 3.1). For each ibd

 pattern in the parents, the conditional expectation of the indicator of autozygosity
 of the offspring is simply the conditional probability given the parental ibd state.
 These probabilities that the final individual, B, receives two ibd genes, range from
 1.0, for the parental pattern 1111, down to 0.0 for the pattern 1234:

 fB = 4'(MB, FB) = Pr(1111) + 0.5(Pr(1112) + Pr(1121) + Pr(1211)

 +Pr(1222) + Pr(1212) + Pr(1221)) +

 0.25(Pr(1213) + Pr(1231) + Pr(1223) + Pr(1232)).

 Here Pr(ki k2k3k4) is the probability of that pattern among the four parental genes,
 the first two being the genes of one parent and the last two of the other. The
 Monte Carlo standard error of this estimate is approximately 0.17/vN, in this
 case estimated empirically. There are two sources in the gain in efficiency, one
 replacing a part of the Monte-Carlo by an exact computation of an expectation
 (Rao-Blackwellization), and second the negative covariances of the Monte-Carlo
 multinomial proportions providing the estimated ibd pattern probabilities in the

 parents. Since V/(M,F) is a positive linear combination of these ibd pattern
 probabilities, the negative covariance reduces the Monte Carlo standard error of

 the estimate of !(M, F). This idea is a little different from the use of antithetic
 variates (Hammersley and Handscomb, 1964), but of similar effect. Antithetic
 variates are negatively correlated realizations used to reduce the variance of a sum
 or average. Here the realizations of S are independent, but the component events
 are negatively correlated.
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 Chapter 4

 Genetic Linkage

 4.1 Linkage and recombination: genetic distance

 Contrary to Mendel's second law (Mendel, 1866), there is dependence in the
 inheritance of genes at syntenic loci (that is, loci on the same chromosome pair).
 Such loci are said to be linked. Where the data are affected by the alleles at more
 than one locus on a chromosome pair, it is no longer sufficient to consider the
 inheritance of genes at each locus separately.

 Recall the meiosis indicators of (equation (1.2)):

 S,j = 0 if copied gene at meiosis i locus j is parent's maternal gene

 = 1 if copied gene at meiosis i locus j is parent's paternal gene.

 Here i = 1, ..., m indexes the meioses of the pedigree, and j = 1, ..., L indexes the

 genetic loci. The marginal distribution of each Si,j is as before (section 1.2):

 1
 Pr(S2,j = 0) = Pr(Si,j = 1) = 2

 2

 For different meioses i, the Sjj are independent.
 We say that, in a given meiosis, recombination has occurred between two loci j

 and 1, if the genes segregating to the gamete at these two loci are from different
 parental chromosomes. That is, they derive from different grandparents. For two
 loci, we do not need a full model for the vector Si,, (equation 1.3). The pairwise

 distribution of (Sij, Soi) is determined by the recombination frequency, which is a
 measure of the dependence in inheritance between the two loci. For two given loci
 (1 and j) the recombination frequency p between them is

 (4.1) p = Pr(Si /: Si,j) for each i, ? < P < 2

 For loci that are close together on a chromosome, p is close to 0. For independently

 segregating loci, p = 2. Note that, although 0 is the notation often used for the

 49
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 50 CHAPTER 4. GENETIC LINKAGE

 recombination parameter in genetic analysis, we here use p and reserve 0 for the
 more general set of all parameters of the genetic model.

 A point on a gamete chromosome at which the DNA switches from being a copy
 of the parent's maternal [paternal] chromosome to being a copy of the parent's
 paternal [maternal] chromosome is known as a crossover. Haldane (1919) defined
 genetic map distance between any two loci as the expected number of crossovers
 occurring between them on a gamete. The unit of genetic distance is the Morgan,
 but it is often more convenient to use centiMorgans (cM). Since expectations are
 additive, regardless of dependence of random variables, genetic map distances are
 always additive. They also subsume any positional variation in recombination rates
 such as recombination hot-spots: they say nothing about the relationship between
 physical and genetic distances. A recombination occurs between two loci, if, in that
 meiosis, there are an odd number of crossovers between them.

 In equation (4.1), we assume that the recombination frequency p does not vary
 with the meiosis i. In practice, recombination frequencies vary among meioses, a
 major factor in this variation being the sex of the parent. The expected number of
 crossovers between two locations can be quite different for a gamete from a male
 than for a gamete from a female. Thus genetic maps are sex-specific, where the sex
 in question is that of the parent producing the gamete. For ease of presentation,
 sex-differences in genetic maps will be ignored in this monograph. Computationally,
 such variation can be easily accommodated.

 Haldane's original meiosis model, and other early models, were two-strand
 models. That is, the locations of crossovers between the two parental
 chromosomes were modeled. This is sufficient to determine the joint probabilities

 Pr(Sij, ... Si,L), hence, in principle, probabilities of L-locus gene ibd patterns
 among a set of obseived related individuals, and hence probabilities of observed
 data. In Haldane's model, these crossovers were assumed to occur as a Poisson
 process, rate 1 (per Morgan). Thus there is no interference. The number of
 crossovers in a given genetic distance has a Poisson distribution, the numbers of
 crossovers in disjoint intervals are independent, and, conditionally on the number
 occurring, their locations are uniformly and independently distributed, all measures
 being, of course, with respect to genetic (not physical) distance. The recombination
 frequency at genetic distance d Morgans, p(d), as a function of d is known as the map
 function. Under the no-interference model, p(d) is the probability that a Poisson
 random variable with mean d is odd:

 p(d) = Z ed kedZ (E k - )
 k odd k=~O k/k
 1

 (4.2) = (1 - exp(-2d)). 2

 Note that, under this model, p(d) is an increasing function of d, p(d) - as d - oo,
 and p(d) d as d -+ . These are basic properties of map functions under most
 models for meiosis (see Chapter 5).

 In modeling crossovers Fisher (1922) went to the other extreme: he assumed
 complete interference in the region of Drosophila willistoni chromosome he
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 4.2. HAPLOTYPES, LINKAGE, AND ASSOCIATION 51

 considered. That is, at most one crossover in this chromosome region can occur
 in any meiosis. In this case, genetic distance and recombination frequency are
 equivalent. Although this model does not make sense over large chromosomal

 segments, current mouse data (King et al., 1991) suggest almost complete
 interference over regions of about 10cM.

 4.2 Haplotypes, linkage, and association

 The vector of alleles at loci on a chromosome is a haplotype, and a multilocus
 genotype is a pair of haplotypes. Note that the set of single-locus genotypes
 do not determine the multilocus genotype. The multilocus genotype includes a
 specification of phase; that is, which alleles (one at each locus) are on the same
 chromosome. Some modern literature does refer to the set of single-locus genotypes
 (without phase) as the multilocus genotype, but this terminology is confusing. For
 clarity, we refer to the potentially observable set of (single-locus) genotypes at
 any set of DNA marker loci as marker phenotypes, even when these loci do not
 correspond to functional genes.

 For simplicity in this section we restrict attention to two diallelic loci, one with
 codominant alleles A1 and A2, and the other with codominant alleles B1 and

 B2. There are then four haplotypes A1Bj, A1B2, A2B1 and A2B2. Suppose the
 haplotype frequencies are ql, q2, q3 and q4. There are 10 two-locus genotypes,
 but only 9 phenotypes. Genotypes A1B1/A2B2 and A1B2/A2B, both have the
 double-heterozygote phenotype A1 A2, B1 B2. The notation A1 B1 /A2B2 denotes
 that alleles A1 and B1 are on a single haplotype, and alleles A2 and B2 are on
 the other. Just as for the single-locus ABO blood type example (section 2.5),
 haplotype frequencies can be estimated from phenotype frequencies via the EM

 algorithm, under the general model of unconstrained patterns of association among
 the loci. Each phenotypic observation on an individual consists of a set of single-
 locus genotypes.

 For the case of two loci, haplotypes are unobservable only for the double-
 heterozygote phenotype A1A2, B1B2. Each individual who is A1 A2, B1B2 is

 of genotype A1B1/A2B2 with probability qlq4 / (qi q4 + q2q3) and of genotype
 A1B2/A2Bj with probability q2q3/(qlq4 + q2q3). Thus, given a set of current
 haplotype frequency estimates qi, i = 1,...,4 and the phenotypic counts, the
 conditional expected genotypic counts are easily obtained. New haplotype estimates
 then are the expected multinomial proportions of each haplotype.

 Clearly, this method can be extended to any number of loci. Thus, for example,
 population data can be used to estimate haplotype frequencies at a set of tightly
 linked SNP markers (section 1.1). However, an individual heterozygous at 1 loci
 can have any of 21-1 multilocus genotypes (pairs of haplotypes). The observation
 is partitioned among the 21-1 possible pairs, in accordance with current haplotype
 frequency estimates. Performance of the EM algorithm can be poor when there are
 many linked polymorphic marker loci, particularly when many haplotypes may not
 occur in the sample. Thus, for microsatellite markers with many alleles or for many
 tightly linked SNP markers (section 1.1), population marker phenotype data alone
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 may not serve to provide accurate haplotype frequencies. Better performance of
 the EM algorithm is obtained by constraining some haplotype frequencies to zero,
 when the estimates of their frequencies appear to be approaching zero.

 An individual who is homozygous at both loci can pass on only one haplotype
 to an offspring; for example an A1 Al, B2B2 individual must pass on an A1B2
 haplotype. An individual who is homozygous at one locus can pass either of two
 haplotypes. Each possibility has probability 1/2 regardless of the recombination

 frequency p between the two loci; for example, an A1 Al, B1 B2 individual passes on
 A1 B1 or A1 B2 each with probability 1/2. Only the double heterozygote A1 A2, B1 B2
 provides meioses which are informative for linkage. That is, this individual passes
 each of the four haplotypes A1 B1, A1 B2, A2B1 and A2B2, with probabilities (1 -
 p)/2, p12, p!2 and (1 - p)/2 if his genotype is A1B1/A2B2, and with probabilities
 p12, (1 - p)/2, (1 - p)/2, and p/2 if his genotype is A1B2/A2B,.

 A measure of allelic association between the two loci is

 A = Pr(A1B1) - Pr(A1) Pr(Bi)

 = qi - (ql + q2) (ql + q3)
 = (qlq4 - q2q3)

 since q1 + q2 + q3 + q4 = 1. This measure is due to Robbins (1918) and is known as
 the coefficient of linkage disequilibrium. This name is confusing, but the term is too
 well established to change. In the absence of selection, allelic associations between
 loci arise from population structure, admixture and history. They are, however,

 maintained by tight linkage. Suppose the current haplotype frequencies are qi, q2,
 q3 and q4, as above. In expectation, in the absence of selection, allele frequencies
 are unchanged at the next generation. Suppose the haplotype frequencies are q*, q,
 q3 and q4. Now, for example, an A1 Bl haplotype in an offspring can arise in three
 ways. It can be transmitted from a parental A1 B1 without recombination. It can
 also be transmitted from a parental A1 B1 with recombination, if the second parental

 haplotype is A1Bj, A1B2, or A2B1. Finally, with recombination, an A1B2/A2B,
 parent may transmit an A1Bj haplotype. Thus

 q* = (1 -p)qi + pql(ql +q2 +q3) + pq2q3

 - qi - p(qlq4-q2q3) qli.- pA.

 Analogously, q* = q2 + pA, q3 = q3 + pA and q = q4- pA. Thus

 = q q-q2 q

 - (q1 - pA)(q4 - pA) - (q2+ pA)(q3 + pA)

 A - pA(qi + q2 + q3 + q4) + p2(A )
 - (1 - p)A.

 In the absence of any maintaining force, such as selection, or continuing population
 subdivision and admixture, allelic associations decay in expectation over the
 generations, by a factor (1 - p). For unlinked loci (p = -) this decay is rapid,
 but for tightly linked loci (p z 0) allelic associations may be maintained over
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 hundreds of generations. Actual population are finite, and mating is non-random;
 allelic associations are often seen in small natural populations. For a more detailed
 discussion, see Weir (1996).

 4.3 Lod scores for two-locus linkage analysis

 In the absence of genetic interference (equation (4.2)), and in fact under most

 models for meiosis (Chapter 5), the recombination frequency, p, is an increasing
 function of genetic distance. Genetic mapping involves the ordering of loci on
 a chromosome, the detection of linkage, and the estimation of recombination

 frequencies. Some loci determine traits: others are DNA markers. Typically, a
 map constructed of DNA markers is then used to map the loci controlling a trait
 of interest. For unlinked loci, P = 2. For loci that are genetically linked, p < 2
 Linkage analysis is concerned with estimating p and with testing the null hypothesis

 Ho : p = 2 against the alternative H1 : p < 2. Estimates and tests are based on
 likelihoods and likelihood ratios (Chapter 2).

 If the genes (one at each of two loci) descending from given parent to a given
 offspring derive from different parental chromosomes, and hence from different
 grandparents, the offspring is said to be recombinant with respect to these two

 loci. In the simplest cases, whether an offspring i is a recombinant (Xi = 1) or not
 (Xi = 0) is observable. Then P(Xi = 1) = p and the number of recombinants T in
 n independent meioses has the binomial B(n, p) distribution.

 AlA2 3A4
 D + + +

 A1A3 A2A2
 D + ++

 AA A1A2 A2A3
 D + + + + +

 FIGURE 4.1. Example of recombination in a three-generation family

 For example, at a DNA marker locus, suppose two grandparents have types
 A1A2 and A3A4, and their daughter has type A1A3. Suppose she marries someone
 of type A2A2 and their three children are of types A1A2, A1A2 and A2A3. Suppose
 also the grandparent of type A1 A2, the daughter, and the first of the three children
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 (a) (b)
 AlBi/AlBl A2B2/A2B2

 AjBi/A2 2B2/A2B2 A1A2, BB 2A2,B2B2

 AjBi/A2B2 AjB2/A2B2 A1Bu/A2B2 AiB2/A2B2
 A2B2/A2B2 A2Bu/A2B2 A2B2/A2B2 A2Bj/A2B2

 recombinant non-recombinant type 1 type 2

 FIGURE 4.2. Examples of (a) phase-known and (b) phase-unknown backcross linkage designs

 all carry an allele D causing some trait of interest, and the other individuals carry
 only normal alleles, denoted + (Figure 4.1). Then we know the trait allele D
 segregates with the A1 marker allele from the grandparent to his daughter, and
 that the normal allele + segregates with A3 from her other parent. To the three
 children from their mother, we have segregation of A1 with D, of A1 with +, and of
 A3 with +. Thus children 1 and 3 are non-recombinant (X1 = X3 = 0) and child 2
 is recombinant (X2 = 1). So n = 3, the number of recombinants T - B(3, p), and
 in this example T takes the value t = 1.

 In the case where we can classify each offspring as recombinant or non-
 recombinant, as above, the number of recombinants in n observed offspring is
 T B(n, p). This type of data arises in a backcross experiment, where two inbred
 lines are crossed, and the hybrid is crossed back to either of the two lines. An
 example of this linkage design is shown in Figure 4.2(a). Suppose one line has
 only alleles A1 at one locus and B1 at the other (genotype A1B1/A1B1), while the
 other line has only A2 and B2 (genotype A2B2/A2B2). Then the cross will produce
 hybrid individuals who have genotype A1B1/A2B2. If we then cross back to the
 A2B2/A2B2 line, all the offspring will get A2B2 from that parent, and we can tell
 which combination A1Bj, A2B2, A1B2 or A2B1 they get from their hybrid parent,
 and so whether or not they are recombinant.

 Suppose n offspring of such matings are scored, and t are recombinant. To test

 for linkage, we compare the likelihood to its value in the absence of linkage (p = -).
 The log-likelihood difference is

 (4.3) lod(p) = ?(p) - f(-) = tlog(p) + (n - t) log(1 - p) + nlog(2). 2

 In linkage analysis it is traditional to use logs to base 10, and to refer to (4.3)
 as the lod score (Morton, 1955). In our numerical examples we shall use natural
 logarithms except where specified, for easier comparison with standard statistical
 results.
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 4.4. POWER, INFORMATION AND ELODS 55

 The maximum likelihood estimate of p is - = t/n, provided 2t < n: note only
 values of p < - have meaning under the model (4.2). Then to test p = 2 against 22

 p < 2, we may consider the maximized value of the lod score:

 (4.4) lod(p^) = t log t + (n - t) log(n - t) - n log(n/2)

 provided 2t < n, and 0 otherwise. This maximized lod score is a decreasing function
 of t, and we reject the null hypothesis p = 2 if t < to. The critical value to may be
 chosen to give a specified size of the test (type I error).

 In many linkage experiments, however, or in human genetics where we do not
 have designed crosses, we often cannot classify all individuals as recombinant and

 non-recombinant. There are many possibilities, but a typical one is the phase-

 unknown backcross. This arises if one parent is A1A2, B,B2 and the other is
 A2A2,B2B2 as above, but now we do not know whether the first parent received
 A1B1 and A2B2 (type 1 combinations) from her parents, or A1B2 and A2B1 (type
 2 combinations). This design is shown in Figure 4.2(b). Suppose we have families
 of this kind, and in each family we type just two offspring. Since each offspring
 gets A2B2 from the father, we can, as before, determine what each got from the
 mother. Either both offspring get the same "type" of combination (type 1 or type
 2), or there is one of each. If there is one of each, then one offspring must be a
 recombinant and the other not; so this event has probability p* = 2p(1 - p). If they
 get the same "type" of combination, then either both are recombinant, or neither

 is, so this event has probability 1 - p* = p2 + (1 _ p)2. So instead of a T B(n, p)
 count of recombinants, we have a W B (n, p*) count of families.

 Note however, that for 0 < p < 1, p* is a 1-1 monotone increasing function of

 p, and when p = - * = 2 - 2 ' = -. So testing Ho: P = 2 against the one-sided
 alternative H1 : p < 2, is exactly equivalent to testing Ho : p* = - against the
 one-sided alternative HZ : P* < 2. Thus the test follows exactly as before; we reject
 P= 2 and conclude there is linkage if W < wo, where again the critical value wo
 is determined by the desired size of the test.

 4.4 Power, information and Elods

 For simplicity, consider the case of the phase-known backcross, where T - B(n, p).

 Now when n is large, T is approximately N(np, np(l - p)), and under Ho : P - 1
 it is a good approximation to take T N(Q, n). So 2(T - n) N(0, 1) and for
 a test size a we reject Ho in favor of H1 : p < 2 if 2 (T - 2-) < -1 (a) where 4' is
 the standard Normal cumulative distribution function. For example, for a = 0.025,
 -1 (a) = -1.96 -2, so Ho is rejected if T < n - = k* (Table 4.1).

 Using equation (4.4), we find that the (base 10) lod score is around 1 for a number

 of recombinants at the critical value for a test of size a = 0.025 of Ho : p =
 (Table 4.1). Traditionally, a base-10 lod score of 3 is required to infer linkage
 (Morton, 1955). This is a more stringent test, the idea being that if two arbitrary
 locations in the genome are chosen the prior probability of linkage is small. Also
 given in the table is the upper bound on the number of recombinants that will
 provide a lod score of 3.
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 offspring critical recombinant lod score recombinants

 sampled value proportion lodio(k*/n) for lod
 n k* k*/n score 3

 25 7 t0.3 1.088 < 3

 100 40 0.4 0.874 < 31

 625 287 0.46 0.905 < 267

 1024 480 0.48 0.869 < 452

 TABLE 4.1. Critical values for a test size a - 0.025 and base-10 lod scores for binomial samples

 Type genotypes number each prob

 I A1A1,B2B2, A2A2,B1B1 2 p2/4
 II A1A1,B1B2 1 _(p2 + (1 _ p)2)

 III A1A1,BlB2 etc. 4 2p(1 - p)
 IV A1A1,B1Bl, A2A2,B2B2 2 (1 _p)2/4

 TABLE 4.2. The groups of offspring genotypes in an intercross design. Note the A1A1,B1B2
 type includes both double-heterozygote two-locus genotypes A1Bl/A2B2 and AlB2/A2Bl. The
 third group includes the four types heterozygous at one of the two loci: A1 A1, B1 B2, A1 A2, B1 B1,
 A2A2, B1B2 and A1A2, B2B2

 Now if p is the true value, the probability Ho is rejected is

 ( T-rnp k* -np \
 Pr(T < k*; p) = Pr < )

 p(-p.) Pn(1 p p),

 k np = ( (a) + fin( -2p

 (4.5) V np( - p) J 2 p(l-py)

 again using the Normal approximation to the Binomial distribution. This is the

 power function of the test, and decreases over 0 < P < 2 Clearly, for a given
 sample size, linkage is more easily detected when p is small. Conversely, for given

 p, one may use (4.5) to determine the sample size n required for given power. The
 case of the phase-unknown backcross is analogous, with p being replaced by p*, and

 n now denoting the number of two-child families.

 In order to get more information, an intercross experiment may be performed,

 instead of a backcross. In this case two phase-known hybrid parents, each of type

 A1 B/A2B2 are mated. There are nine types of offspring, but these fall into four

 groups, shown in Table 4.2. Each type within a group has the same probability, as

 a function of p, and hence the total count of offspring in each group contains all the
 available information for linkage. (These total counts are the sufficient statistics

 for p.)

 Consider a sample of size n, with nj in class j, j = 1, 2,3,4. As in equation (2.5),
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 Types H2: general Hl:total prob Ho: p =

 I 'q Ip2 0.125
 II q2 2 (p2 + (1 _ p)2) 0.25
 III q3 2p(l - p) 0.5
 IV q4 -(1 - p)2 0.125

 TABLE 4.3. Probabilities of data observations in an intercross design. Given are the total
 probabilities of each group of types shown in Table 4.2, under the three alternative hypotheses

 the log-likelihood for these multinomial data is, up to an additive constant,

 4

 n(q)= E nj loge qj (P)
 j=l

 The probabilities of each phenotype group are shown in Table 4.3, under the general
 multinomial model H2, the general linkage model H1, and in the absence of linkage
 Ho.
 For example, suppose n = (1, 72, 42, 85).

 Under H2: general qj, j=1 qj = nj/n,
 or q = (0.005, 0.36, 0.21, 0.425). The dimension of H2 is 3.
 Under H1 : general p, for these data we find, by evaluating the log-likelihood, that
 p = 0.12 giving q(p) = (0.007, 0.394, 0.211, 0.387). The dimension of H, is 1.
 The null hypothesis is of no linkage; Ho : p = 2. This has dimension 0, and the
 fixed probabilities q(2) = (0.125, 0.25,0.5,0.125) of the four classes of types.

 We see that the estimated cell probabilities under H1 and H2 are in good
 agreement, but quite different from those under Ho. Computing the maximized
 log-likelihoods for Hi, i = 0,1,2, we find that they are -307.76, -217.87, and -
 217.14 respectively. For testing null Ho against alternative H1, the (base e) lod
 score is 89.9. Twice this value (179.8) has approximately a x2 if Ho is true. So
 clearly Ho is rejected.
 For testing null H1 against alternative H2, the lod score is 0.73, and twice this
 value (1.46) is x2 if H1 is true. So H1 is not rejected.

 For multinomial data in general, we can find the form of the Kullback-Leibler
 information (section 2.2). Suppose q is the true value of q, and qo is some
 hypothesized value.

 4

 tn(q) = E nj loge qj.
 j=1

 So for a sample size n

 Kn(qo; q) = Eq(?n(q) - 4n(qo))
 4 4

 = n qj loge qj - n , qj loge qoj
 j=1 j=1
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 True p 0.0 0.1 0.2 0.3 0.4 0.5

 Intercross data 1.04 0.479 0.226 0.089 0.021 0.0
 Backcross (phase known) 0.69 0.368 0.193 0.082 0.021 0.0

 Backcross (phase unknown) 0.35 0.111 0.033 0.006 0.0004 0.0

 TABLE 4.4. Comparison of the information in linkage designs per offspring individual sampled:
 Kullback Leibler information for testing p 1/2 as a function of the true value of p

 or, for a single observation,

 4

 Ki(qo;q) = ZqilogeQL)

 (Note the notation is reversed from section 2.2. Here q is the true parameter value,
 and qo is the hypothesized value.) In the case of linkage analysis data, qj = qj(p)

 and the null hypothesis is Ho: p = 2: qoi = qj (). Evaluating K1 for the above
 phase-known intercross experiment, and for the previous binomial phase-known and
 phase unknown backcross experiments, we obtain the measures of information per
 offspring individual shown in Table 4.4.

 This is a measure of information, per offspring sampled, for detecting linkage

 when p is the true value. We see that the more p differs from - the more information
 there is, as expected. Also each phase-known offspring contributes at least twice as
 much as each of the two offspring in the phase-unknown case. Particularly when
 p is close to 1/2, the phase-unknown two-offspring design has low power. We see
 that each intercross offspring contains more information than a backcross offspring,
 also as expected. However, note that there is not twice as much information in

 the intercross offspring, as there would be if we could tell the difference between

 the A1B1/A2B2 and A1B2/A2B, offspring (see Table 4.3). As p gets closer to 2
 there is almost no additional information in doing an intercross design rather than
 a backcross.

 Note that for P = 2 the Kulback-Leibler information is the expected base-
 e lod score at the true value PT of the recombination frequency. This measure
 of information is very widely used in linkage analysis, and is known as the
 Elod (Thompson et al., 1978). Note that we expect the base-e lod score to be
 approximately nK, when n is large. For our previous data with n = 200, we had
 p = 0.12; in fact, the data were simulated at p = 0.1. Then 200 x 0.479 is about 95,
 in good agreement with the lod score value of 90 which we obtained. This also tells
 us that if we had realized that p might be around 0.1, it was very wasteful to breed
 200 mice. When p = 0.1, about 20 mice are expected to give a lod score (base e)

 of more than 9; this is plenty to detect that p 0 2. (Note again that we have used
 natural logarithms in these examples, contrary to standard practice in genetics.)

 The material of sections 4.3 and 4.4 extends readily to the estimation and

 testing of two recombination frequencies Pm in males, and pf in females. Similar
 likelihood ratio tests may be used to test equality of male and female recombination
 frequencies. For a much more detailed account of classical linkage analysis and more

This content downloaded from 
������������128.95.104.109 on Sat, 19 Sep 2020 13:28:15 UTC������������� 

All use subject to https://about.jstor.org/terms
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 modern developments, the reader may consult the excellent text of Ott (1999).

 4.5 Two-locus kinship and gene identity

 The recursive equations for multiple kinship coefficients of section 3.4 (equations

 (3.6) and (3.7)) extend to multiple loci, conditioning on the meiosis indicators
 in a given meiosis, over the loci in question. Consider, for example, the case

 Of $2(L1(B('), C), L2(B(1), E)). This expression denotes the two locus kinship
 probability, that, in a single gamete segregating from B, the gene at locus L1 is

 ibd to that on a gamete segregating from individual C, while the gene at locus
 L2 is ibd to that on a gamete segregating from individual E. The identical

 superscript "(1)" on the individual B indicates that we are considering here a

 single meiosis i from B, rather than two separate meioses to different offspring.
 Now if B is not an ancestor of C or E, we may condition on the four events

 (Si, , Si,2) = (0,0), (0,1), (1,1), (1,0) with probabilities -(1 - p), -p, I(1 -
 p), 2p respectively, where p is the recombination frequency between locus 1 and
 locus 2. Thus we obtain

 42(L1 (B(1), C), L2(B(), E)) = - (1-P))2 (Li((B), C) , L2 (MB), E)) +
 2

 1 ~~~~~~~~1 pB B
 2Pb2(Ll (MB, C), L2(FB, E)) + 2(1-P)02(Li(F`B , C), L2(F(B) E))

 + 1P02(L1 (FBI C), L2 (MB,I E)). +2

 Again, the superscript specifies which meiosis from an individual is considered-

 here the ones from MB and FB to B. In the case of two loci it is necessary
 to distinguish the meioses from a given parent. The full set of equations for

 determining two-locus gene identity probabilities between genes segregating from
 up to four individuals are given by (Thompson, 1988). These equations can be

 used to determine two-locus ibd state probabilities, even on a large and complex
 pedigree.

 At two linked loci, there are also many more possible gene identity patterns

 (Denniston, 1975). Some relationships which have identical gene ibd probabilities
 at a single locus can, in principle, be distinguished by data at linked loci. The
 simplest example is for the three unilineal (1s2 = 0) pairwise relationships of
 grandmother-granddaughter (G), half-sisters (H), and aunt-niece (N). Each of
 these relationships has r, = (1, 1,0), and hence they are indistinguishable on the
 basis of data at independently segregating loci. For such relationships, gene identity
 at two linked loci is summarized by

 Ki,i(p) = P(share 1 gene ibd at each of 2 loci at recombination p).

 For the three relationships above, we have

 1
 G Ki,1 (p) = - (l- p)

 2
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 H: ni,i(p) = V(p +(1-p)) = -R say
 2 ~~~~~2

 N : Ki,i(p) = ((1-p)R + p/2).

 Thus the relationships are identifiable of the basis of data at two linked loci (0 <
 p < -), but not on the basis of data at unlinked loci. All the three relationships
 have rc1,1(0) = 2 and i,i(-) =

 Note that, although Kij, (p) is sufficient to specify pairwise genotype and
 phenotype distributions, it does not determine the two-locus kinship of the
 individuals, unlike at a single locus where 4' = (X1 + 21v2)/4. The shared genes at
 the two loci may be on the same haplotype in the individual, or on different ones. In
 fact, in H they are necessarily on the same (maternal) haplotype in the two half-sibs,
 while in G they may be on either haplotype of the grandmother. For N, for the first
 term they are on the same haplotype in the aunt, while the last term corresponds
 to the case where the genes at the two loci are on two different haplotypes in the
 aunt. In fact, G and H have the same two-locus kinship, (1/8)(1 - p)2R.

 4 unt

 Sibl Halfsib

 FIGURE 4.3. Multi-locus genetic marker data are available on a pair of sibs, and on a third
 related individual, who may be an aunt, niece, or half-sister of the pair

 Returning again to the example of section 3.6, consider three individuals
 consisting of a pair of individuals who are putative full sibs, and a third who may be
 the aunt, niece, or half-sib of the sib pair (Figure 4.3). This example arose in a real
 example of inference of relationships considered by Browning (1999). Only with
 joint analysis of the data at linked loci on all three individuals are the alternative
 three relationships identifiable (Table 4.5). In the real-data example, the most likely
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 Individuals

 Pairwise Joint

 Loci unlinked H = N = A H _ N

 Loci linked N _ A H, N, A identifiable

 TABLE 4.5. Distinguishing relationships among three individuals who are putatively a pair of
 sisters with an aunt, niece, or half-sib

 relationship is that the third individual is a niece of the sib pair (Browning and
 Thompson, 1999). Due to one member of the sib pair having data at relatively few
 markers, the inference is not conclusive. However, with data on a 10cM genome
 scan, for example, there would be no difficulty in distinguishing the relationships
 provided analysis is performed jointly both over individuals and over loci.

 Some pairwise relationships which provide identical two-locus kinship coefficients
 have different three-locus kinship coefficients (Thompson, 1988). Thus, there are
 relationships that are non-identifiable on the basis of gametes observed at pairs of
 loci (whatever the values of the recombination frequencies between them), but that
 are identifiable on the basis of gametes observed at trios of loci. One may conjecture
 that there are relationships non-identifiable on the basis of L-locus kinship, but
 identifiable on the basis of L + 1-locus kinship.

 4.6 Homozygosity mapping with a single marker

 We introduce the ideas both of linkage analysis for linkage detection and of
 association analysis for the fine-scale localization of trait genes via homozygosity
 mapping using the ideas of two-locus gene ibd already encountered. Homozygosity
 mapping was developed by Lander and Botstein (1987) to detect linkage for the loci
 determining rare recessive disease traits, but as noted by Smith (1953) the principle
 is the same as in any linkage analysis: a likelihood for the recombination frequency
 p, or more generally for the trait locus location, is computed. With a single marker
 locus, the maximized likelihood under the hypothesis of linkage p < 2 is compared
 with the likelihood under the hypothesis that the trait locus is not linked to the
 marker locus or loci p = 2. In the case of homozygosity mapping, the linkage
 inference is based on data on unrelated affected inbred individuals. It relies on
 the fact that an inbred affected individual has high probability of carrying two ibd
 genes at the the trait (disease) locus (section 3.3), and hence also at any closely
 linked marker locus. Since ibd genes are necessarily of the same allelic type, such
 individuals will show a patch of homozygosity in the neighborhood of the trait locus;
 where the same markers are homozygous across multiple inbred affected individuals,
 the evidence for linkage accumulates.

 Suppose the frequency of the recessive disease allele is q, and at the marker locus
 alleles Ai have frequencies Pi. Suppose that the affected individual has inbreeding
 coefficient f, and probability f2 (p) of carrying genes ibd at both of two loci between
 which the recombination frequency is p. Then the probability the individual is
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 62 CHAPTER 4. GENETIC LINKAGE

 autozygous at a specific one of the two loci but not the other is f - f2(p), and the
 probability he is autozygous at neither is (1 - 2f + f2(p)). If the individual has
 marker phenotype AjA1, he cannot be autozygous at the marker locus, and we have
 likelihood ratio

 L(p) _ Pr(data; p)

 L(p=-) Pr(data; p=)

 2pjpl (q(f - f2(P)) + q2(1 - 2f + f2(P)))

 2pjpl(q(f - f2) + q2(1 - f)2)

 (4.6) = (f - f2(P)) + q(1 - 2f + f2(p)))
 (4.6) ~~~~~~(1 -f)(f +q(1- f))

 Since sampling is through an affected individual, the data probabilities required here
 are those of the marker phenotypes, conditional on the affected trait phenotype.
 However, since the marginal probability of an affected individual, qf + q2(1 - f),
 does not depend on p, the likelihood ratio is also the ratio of the joint probabilities
 of marker and trait phenotypes. The joint probabilities are slightly more easily
 considered.

 Since f2(p) is a decreasing function of p, with value f2 at p =, the likelihood
 ratio (4.6) is always less than one. A heterozygous marker phenotype provides
 evidence against linkage. However, even at p = 0, where the value is q(l - f)/(f +
 q(l - f)) the evidence against linkage is not strong unless q is very small. Affected
 individuals may not carry ibd genes at the trait locus.

 If the individual has homozygous marker phenotype AjAj the likelihood ratio is

 L(p) Pr(data; p)

 L(p=2) Pr(data; p=)

 _ qpjf2(p) + q2pj(f - f2(p)) + qp2(f - f2(p)) + q2pj2(1 -2f +f2(p))
 qpJf2 + q2pjf(1-f) + qp2f(1-f) + q2p2(1- f)2

 (4.7) = f2(P) + q(f - f2(p)) + Pj(f - f2(p)) + qpj(1 - 2f + f2(p))
 f2 + qf(1-f) + pjf (1-f) + qpj(l- f)2

 The coefficient of the decreasing function of p, f2 (p), is (1 - q) (1 - pj), and thus this
 likelihood ratio is maximized at p = 0. At this value, f2(P) = f, so the likelihood
 ratio is

 f+(I -f)qpj

 (f+(1-f)q)(f+(1-f)pj)

 This is always greater than one, and is larger if q or pj is small.
 Likelihood ratios are multiplicative over unrelated pedigrees i, or log-likelihoods

 are additive. The base-10 log-likelihood ratio, or lod score is

 lod(p) = Elog,o Li(p)
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 4.6. HOMOZYGOSITY MAPPING WITH A SINGLE MARKER 63

 where Li (.) is the likelihood contributed by pedigree i. The maximized lod score is

 max (lod(p)).
 ?<P 12

 Of course, in combining over pedigrees, the maximizing p may be neither 0 nor 1
 In this case, the form of f2(p) is also relevant, not merely the value of f. Again, a
 useful measure of information for linkage analysis is the expected lod score or Elod
 (section 4.4):

 (4.8) Elod(p) = Ep(lod(p)).

 The Elod is additive over independent pedigrees. Each affected individual with
 inbreeding coefficient f has probability f/(f + (1 - f)q) of having two ibd genes at
 the disease locus. Hence, at p = 0, the contribution of each such affected individual
 to the Elod is

 f + (-f)q lg (1 - f)q)(f + (1 - f)pj))

 + (I-fq-log (f(1 -f)q)) f+ (I ( f))q lo f ( (1 -f)q)q

 As q -+ 0, this has limiting value

 - Epj log(f + (1 - f)p3)
 For example, for the affected offspring of first-cousin marriages (f = 1/16), and a
 polymorphic marker locus (for example, pj = 0.1 for each of 10 alleles) the value is
 log(6.4). A small number of unrelated affected individuals all homozygous at the
 same polymorphic marker locus provides strong evidence for linkage.

 Homozygosity mapping, and linkage analysis in general, can provide good
 evidence for linkage. With sufficient data, the loci determining simple Mendelian
 traits can be localized down to 1 cM (p = 0.01) (Boehnke, 1994). However, even
 with data at multiple linked loci, finer localization is normally impossible; there
 are insufficient informative meioses in the set of pedigrees to resolve loci that are
 too tightly linked. The above development of homozygosity mapping assumed,
 as do most linkage analyses, absence of allelic association between the trait and
 marker loci. However, most current copies of a rare recessive disease allele may

 trace to a single mutation, say on a haplotype carrying marker allele Aj. Then, as
 seen in section 4.2, at tight linkage, the allelic association between the loci decays
 slowly. In this case, not only will the majority of affected inbred individuals be
 homozygous at the marker locus, but most "unrelated" affected inbred individuals
 will be homozygous AjAj, due to remote coancestry of the disease alleles, not
 modeled by the analysis of the separate pedigrees. In effect, the analysis makes
 use of the absence of recombination at a large number of ancestral meioses from
 the original disease mutation to the current affected individuals. Such allelic
 associations have been used to assist in the fine-scale mapping of many rare recessive
 diseases including cystic fibrosis (Cox et al., 1989) and Werner's syndrome (Goddard
 et al., 1996).
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 64 CHAPTER 4. GENETIC LINKAGE

 4.7 Meiosis at multiple linked loci

 We now introduce notation for a chromosome with L ordered loci, 1,... , L. For ease
 of notation, we assume that the loci are ordered 1, ... , L along the chromosome.
 We consider again the meiosis indicators of equation (1.2), and the vector notation
 of equation (1.3). Different meioses are independent, but the components of the
 meiosis indicator vector for meiosis i, Si,. = (Si,, . . ., Si,L), are dependent. Recall
 also the notation S.,j = (Sj, . .. , SM,j) for the set of all meiosis indicators on the
 pedigree, at locus j (equation (1.3)). Let the intervals between successive loci be

 I1,...,IL-1. Let Rj = 1 if a gamete is recombinant on interval Ij, and Rj = 0
 otherwise (j = 1, .. , L - 1). Then, in a given meiosis i,

 R = 1 if Sij # Si,j+1, and
 (4.9) Rj= 0 if Si,j =Si,j+, j =1,...,L-1.

 Each vector (R1, . . ., RL-1) determines two equiprobable vectors Si,. -
 (Sij, ., Si,L). A model for Si,. is equivalent to a model for (R1,. . ., RL-1) One
 simple model for the distributions of Si,. over more than two loci is considered in this

 section. More general models for (Rl, . . ., RL-1) will be considered in Chapter 5.
 In considering the probability of data on related individuals in a pedigree

 (equation (3.9)):

 (4.10) L Pr(Y) = ZPr(Y I S) Pr(S).
 s

 Often (although not always), data observations will be specific to a given locus.
 For example, for DNA marker loci we observe phenotypes of individuals at given
 loci. Let Y.,j denote the all data pertaining to locus j, so the full data pertaining
 to this chromosomal region is Y = (Y.,1, ... Y.,L), and

 Pr(Y I S) = flPr(Y.,j I J(S.,j))

 where J(S.,j) is the pattern of gene identity by descent among observed individuals,
 at locus j, which is determined by S.,j. Since meioses i are independent, equation
 (4.10) becomes

 (4.11) L = Pr(Y) = E (II I J(S.j)) Pr(Si).))

 To proceed further, we need a model for the vector Si,.. Such models may
 derive from our model for the process of meiosis (Chapter 5) or may be based on
 computationally convenient assumptions. In either case, it is the binary meiosis
 indicators (1.2) which provide a means to trace the descent and ancestry of genes,
 at multiple linked loci. Just as for a single locus (section 3.6), they determine
 patterns of gene-identity-by-descent (gene ibd), which in turn determine patterns
 of phenotypic similarity among relatives.
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 4.8. MULTI-LOCUS KINSHIP AND GENE IDENTITY 65

 The simplest models for meiosis assume no interference: this implies that the

 Rj are independent. Under this model, the dependence structure of the S,j takes
 a simple form, with a first-order Markov property over loci j, and with meioses i
 being independent. The probability of any given indicator Si,j conditional on all
 the others, S(i,j) = {Sk,l; (k,l) 0 (i,j)}, depends only on the indicators for the
 same meiosis and the two neighboring loci:

 Pr(Si,j = s I S_(ij) Pr(Si,j = s I Si,j+l,Sij-1)

 = pLsji31I( pj_)l-l1S-Si,- I

 (4.12) [ss +lI( _x- p)-s-s +

 for s = 0, 1, where pj = Pr(Rj = 1) = Pr(Si,j 7 Si,j+j) is the recombination
 frequency between locus j and locus j+ 1. Note that equation (4.12), is just counting
 the recombination/non-recombination events in intervals Ij-, and Ij, implied by
 the three indicators (Si,j-, Si,j = s, Sij,+I).

 4.8 Multi-locus kinship and gene identity

 Under the assumptions of conditional independence or absence of genetic
 interference, computation and Monte Carlo are, in principle, straightforward. The
 meiosis indicators, S = {S}, are independent over meioses i, and are Markov
 over a sequence of loci j along a chromosome. The recursive equations for two-
 locus kinship generalize to the multilocus case, although becoming progressively
 more complicated. The probability of a recombination pattern in the intervals
 between marker loci is straightforward, being the product of the probabilities of
 recombination or non-recombination in successive intervals (equation (4.12)).

 However, it is the resulting patterns of gene identity by descent among
 observed individuals that determine probabilities of observed data (equation
 (4.11)). Although the component Sij are Markov over loci j, this is not usually so

 for the resulting patterns of gene ibd, J(S.j,), among observed individuals. Different
 values of S.,j may give rise to the same ibd pattern. Along the chromosome, the ibd
 process is an agglomeration of the S.,j process. Grouping the states of a Markov
 chain does not, in general, produce a Markov chain.

 As a specific example, consider again the pedigree of Figure 3.1, and suppose
 we are interested only in autozygosity of the final individual. Marginally at each
 locus the autozygosity probability is 7/64 or 0.1094 (section 3.2). Consider three
 loci, separated by a recombination frequencies of P1 = P2 = 0.1. The two-
 locus inbreeding coefficient of the final individual at recombination frequency 0.1
 is 0.0566. This may be computed exactly by the recursive method outlined in
 section 4.5. Between the outer loci, in the absence of interference, the recombination
 frequency is

 p = P1(l-P2) + P2(I - P1)
 = 0.1 x 0.9 + 0.1 x 0.9 = 0.18.
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 ibd state Exact True Markov

 N N N 0.8915-6 0.7901 0.7881
 N N I 0.0183 + 6 0.0478 0.0497
 N I N 6 - 0.0038 0.0257 0.0255

 N I I 0.0566-6 0.0271 0.0273

 I N N 0.0183+6 0.0478 0.0497

 I N I 0.0345-6 0.0050 0.0031

 I I N 0.0566-6 0.0271 0.0273

 I I I 6 0.0295 0.0293

 TABLE 4.6. Prior autozygosity probabilities over three linked loci for the final individual of the
 pedigree of Figure 3.1

 At recombination frequency 0.18, the two-locus inbreeding coefficient of the final
 individual is 0.0345. These one- and two-locus values determine the three-locus

 probabilities up to one degree of freedom. We have

 Pr(I N N) + Pr(I N I) + Pr(I I N) + Pr(I I I) = Pr(I) = 0.1094

 Pr(N I N) + Pr(N I I) + Pr(I I N) + Pr(I I I) = Pr(I) = 0.1094

 Pr(N N I) + Pr(I N I) + Pr(N I I) + Pr(I I I) = Pr(I) = 0.1094.

 Also, by symmetry, since pi = p2,

 Pr(I IN) = Pr(N I I) and Pr(N N I) = Pr(I IN).

 Then also

 Pr(I I N) + Pr(I I I) = Pr(I I N) + Pr(I II)

 = Pr(I I; p = 0.1) = 0.0566

 Pr(I N I) + Pr(I I I) = Pr(I I; p = 0.18) = 0.345.

 Fixing Pr(I I I) = 6, these equations determine all the probabilities, as given
 in the first column of Table 4.6, under the heading "exact". The values in the
 column labeled "true" are in fact obtained by Monte Carlo (section 3.7), using
 108 independent realizations of genes on the pedigree, and are accurate to 10-4.
 They are fully consistent with the exact probabilities. These probabilities may also
 be estimated using Markov chain Monte Carlo (Chapter 8). A comparison of the
 alternative Monte Carlo procedures in this example is given by Thompson (1994a).

 The final column of Table 4.6 shows the probabilities that would be obtained,
 using the two-locus transition probabilities, and assuming the process to be first-
 order Markov. For this (assumed) Markov process of identity (I) and non-
 identity (N) the transition probabilities, and hence the three-locus probabilities,
 are determined as follows:

 Pr(I -+ I) = 0.0566/0.1094 = 0.5174,
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 4.8. MULTI-LOCUS KINSHIP AND GENE IDENTITY 67

 Pr(I -? N) = 1 - 0.5174 = 0.4826,

 Pr(N - I) = (0.1094 - 0.0566)/(1.0 - 0.1094) = 0.0593,

 and Pr(N - N) = 1 - 0.0593 = 0.9407.

 The resulting probabilities patterns of I and N over the three loci are shown in the

 final column of Table 4.6, labeled "Markov". None of the probabilities computed

 using the Markov assumption is completely accurate, but those having I at the
 second locus are close to Markov. The state I acts approximately (but not exactly)
 as a renewal state of the process. Proportionately, the probability that under the

 Markov assumption deviates most from the true value is that for the trio of states
 (I, N, I). Conditional on non-ibd at the center locus, the probability of I at the
 third locus is substantially increased by knowledge of state I at the first. The

 reason for this is that the states of S resulting in I are few and clustered in the

 total space of S-values. For a fuller discussion of this see Thompson (1994a). The
 non-Markovian nature of I and N holds even for simpler pedigrees. It may seem

 that the differences in the probabilities are small, and substantial only for the

 state of very small probability. However, depending on the phenotypic data, states
 of low prior (pedigree) probability may have high probability conditional on the
 phenotypic data.
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 Chapter 5

 Models for Meiosis

 5.1 The meiosis process

 In section 4.1, we introduced recombination as the process of crossing over between

 the two homologous parental chromosomes in the formation of an offspring gamete,
 and we have considered multilocus segregation probabilities under the assumption
 of no interference (section 4.7). In order to develop better models of multilocus
 segregation, it is necessary to consider the processes of mitosis and meiosis in
 greater detail. Mitosis is the normal process of cell division during somatic

 growth: meiosis is the process of gamete formation. Both processes involve

 chromosome duplication and separation, but only meiosis involves recombination.
 A chromosome is a doubled strand of helical DNA, with complementary bases on

 the two strands. Chromosomes of the shape often depicted in texts, or seen in an
 amniocentesis photograph, exist only just prior to mitosis or meiosis. These are

 actually doubled chromosomes. Each chromosome is thus two double strands of

 DNA. Each double-strand is known as a chromatid: the two chromatids of a single
 duplicate chromosome are known as sister chromatids. In the pair of chromosomes
 just prior to mitosis or meiosis, there are thus four chromatids, or eight strands

 of DNA in total. In our modeling here, we consider the four chromatids, or the
 chromatid tetrad, rather than all eight DNA strands.

 Just after the previous mitotic division, each chromosome exists as a
 concentrated double-strand of DNA in the nucleus of the cell (Figure 5.1(a)). In the
 next stage, interphase, the chromosomes elongate (Figure 5.1(b)), and duplicate;
 at this stage the length of DNA in the nucleus of a cell is 2 meters. The DNA
 then re-concentrates to form the chromatid tetrad (Figure 5.1(c)). In mitosis,
 each chromosome divides to give two daughter cells (Figure 5.1(d)), each with
 a nucleus with the identical chromosome complement as the parent cell nucleus
 (Figure 5.1(a)). In the first meiotic division, however, one of each homologous
 pair of chromosomes must go to each daughter cell. In order to achieve this, the
 pair of chromosomes must become tightly aligned, and in so doing chiasmata occur,
 resulting in an exchange of DNA between two non-sister chromatids (Figure 5. 1(e)).

 69
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 (a) (b

 (c) (d

 FIGURE 5.1. The processes of mitosis and meiosis, shown for a single pair of homologous

 chromosomes in the nucleus of a cell of a diploid organism. See text for details

 The chromosomes separate; each daughter cell nucleus now contains only 50% of the
 DNA of the parent cell, but still in duplicate chromatid form (Figure 5.1(f)). Finally

 in the second meiotic division, in a process analogous to mitosis, these chromosomes

 divide, providing potential gamete cells (Figure 5.1(g)). Each potential gamete now

 contains 50% of the parental DNA, in the haploid form of one chromosome from
 each chromosome pair.

 The crossover process is shown in more detail in Figure 5.2. Figure 5.2(a) shows

 the tetrad on which, in this example, two chiasmata are formed, and Figure 5.2(b)

 shows the four resulting gamete chromosomes. In mammalian organisms, for

 male meioses all four become gametes (sperm), while in female meioses three are

 discarded and one becomes a gamete (egg cell). However, only for certain non-
 mammalian species (such as fungi), or by carefully designed experiments (Hulten

 et al., 1990), is it possible to retrieve the four sperm from a given meiosis. In the
 analysis of data on an offspring individual, we observe only one paternal and one
 maternal meiotic product.
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 (a)

 (b)

 FIGURE 5.2. The formation of chiasmata, and the crossovers resulting in the chromosomes of
 the four offspring gametes. The crossovers occurring are the same as in Figure 5.1(e)

 5.2 From chromatids to crossovers

 Instead of modeling the crossover locations in a gamete (section 4.1), we now
 consider the occurrence of chiasmata locations at which crossovers between non-

 sister chromatids occur. Models for chiasmata formation are known as four-strand
 models, since the four chromatids are considered. Since each chiasma involves

 one paternal and one maternal chromatid, (paternal and maternal referring to
 the grandparental origins of the two homologous parental chromosomes as in

 equation (1.2)), each chiasma exists as a crossover in a resulting gamete with
 marginal probability -. Recall that the definition of genetic distance, provides
 for an expected one crossover per Morgan (section 4.1): this corresponds to an
 expectation of two chiasmata per Morgan, or one per 50 centiMorgans (cM).

 Where only one meiotic product is observed, obtaining evidence for chromatid
 interference is practically impossible (Zhao et al., 1995) (but see also section 5.5).
 It is therefore often assumed that there is no chromatid interference: that is, that
 each chiasma involves two randomly chosen non-sister chromatids, independently
 of other the chromatids involved in other chiasmata. In this case, each chiasma
 results in a crossover in a given gamete, independently with probability 2. Or the
 crossover process is just a thinned (probability= -) version of the chiasma process.
 Since a thinned Poisson process is also a Poisson process, this has no impact on the
 Haldane (1919) no-interference model. The chiasma process is Poisson, rate 2 per
 Morgan. The crossover process is Poisson, rate 1 per Morgan.

 More generally, in a given chromosome interval of genetic length d, suppose
 there are N(d) chiasmata, making now no assumptions about the probability
 distribution of N. If N(d) = 0, there are no chiasmata, no crossovers, and hence
 no recombination. For any non-zero value n of N(d), in the absence of chromatid
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 interference, the probability of an odd number of crossovers is 1/2. (This is left as
 an exercise to the reader: it may be easier to think about tossing a fair coin n times,
 and the probability of an odd number of "heads".) Thus we have the formula of

 Mather (1938) for the recombination probability p(d) at genetic distance d:

 1 1
 (5.1) p(d) = -Pr(N(d) > 0) = (1 - Pr(N(d) = 0)).

 2 2

 The only assumption here is the absence of chromatid interference: under this

 assumption p(d) is an increasing function of d, and is bounded above by I. Note
 also that under Haldane's model Pr(N(d) = 0) = exp(-2d), and Mather's formula
 applies (see equation (4.2)).

 5.3 From chiasmata to recombination patterns

 There is a multilocus version of Mather's formula (5.1). As in section 4.7, consider

 a chromosome with L ordered loci, 1,...,L, and label the intervals I,...IL,
 and let Rj = 1 if a gamete is recombinant on interval Ij, and Rj =0 otherwise
 (j = 1, ... , L - 1). The recombination pattern is a function of the meiosis indicators
 Sij for the given meiosis i, and provides a simpler representation for the current
 discussion:

 Rj = 0 if Sj= Si,j+l

 Ri = 1 if Sij Si,j+l

 for j=1,...,L-1.

 Now also let the (random) number of chiasmata in the intervals, in a meiosis,

 be Nl,...,NL_l. Let C3 = 0 if Nj = 0, and Cj = 1 otherwise (j = 1,...,L- 1):
 Cj is an indicator of presence of chiasmata in interval Ij. If Cj = 0, then Rj = 0.
 If Cj = 1, then Pr(R3 = 1) = Pr(Rj = 0) = 2 In the absence of chromatid
 interference, the R. are conditionally independent given Cj. Thus

 Pr((R,,... , RL-1) = r) = ()CI Pr((Cl,..., CL-1) = C)
 c>r

 1 )L-1 (5.2) - ( E211-c1 Pr((Ci,..., CL-1) = C) 2
 c>r

 where Ic = cj is the number of unit indicators in c, and 1 is a vector of ones.
 This equation is (in essence) due to Weinstein (1936). Karlin and Liberman (1979)
 give a version in terms of the meiosis indicators rather than the recombination
 indicators. A recent discussion, using slightly different notation, is given by Speed
 (1996).

 The estimation of chiasmata presence and absence patterns from recombination
 data provides another example of use of the EM algorithm. Consider again
 equation (5.2), and the estimation of patterns of chiasmata presence and absence,
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 from a sample of n completely observed patterns, r, of recombination and non-
 recombination. An unconstrained estimate of Pr(R = r) is n(r)/n where n(r)
 is the number of meioses exhibiting recombination patterns r. However, if the
 equation

 (5.3) n(r) 1n P()l Pr((Cl,...CLCl) = c)
 c>r

 is inverted, negative values of Pr(C = c) may result. An EM algorithm (section 2.4)
 avoids this, providing estimates of the probabilities of the underlying chiasmata
 presence/absence patterns, q(c) = Pr((Ci,... , CL-i) = c), subject only to the
 constraint of no chromatid interference. In fact, this EM algorithm is very similar to
 that of section 4.2. There a phenotypic observation was partitioned in expectation
 among the possible multilocus genotypes (pairs of haplotypes) providing that
 phenotype. Here observation of a recombination pattern is subdivided among
 the chiasmata presence/absence patterns that could give rise to the recombination
 pattern:

 Pr((C,.., CL-1) = c r) = 2 if c > r
 Zc*>r('C)Ic q(c*)

 = 0 otherwise.

 Thus, given current estimates q(c) and the data counts n(r), the conditional
 expected number of meioses exhibiting chiasmata pattern c is

 (')IcI q(c)

 _c>r Iclq(c*) r<c - ,.2)I ()

 and the new estimate is simply n-1 times this expected number. This EM
 algorithm, although very simply implemented, has poor convergence if there are
 many loci, or very tightly linked loci, since then many patterns c do not occur in
 the sample. Moreover, the resulting constrained MLEs differ from the inversion
 of (5.3) only when some Pr(C = c) have MLE 0. In this case, unfortunately,
 convergence of the EM algorithm can be very slow. However, again as in the case
 of section 4.2, some frequencies q(c) may be constrained to zero, and estimation of
 other chiasmata pattern frequencies continued in the subspace.

 5.4 The chiasmata avoidance process

 The vector (Cl, ... , CL-1), specifies the avoidance and non-avoidance probabilities
 of the chiasma process on intervals of the chromosome. It is slightly neater, although
 of course equivalent, to express Pr((Ri,... , RL1) = r) (or the probability of
 gametic types Pr(Si,.)) in terms of the avoidance probabilities alone, as in Mather's
 formula (5.1). We specify a subset T of the intervals {I,, ..., IL-I } as follows. Let
 tj = 1 if Ij E f, and tj = 0 otherwise. Let Ot be the probability of no chiasmata
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 in T. The set of sbt, for all binary vectors t length (L - 1), is the set of avoidance
 probabilities of the chiasma process. If tj = 1 there are no chiasmata in Ij, but if
 tj = 0 the presence/absence of chiasmata in Ij is unspecified. There is thus a one-
 one relationship between the avoidance probabilities kt and the presence/absence
 probabilities Pr(Cl, . . . , CL-1):

 t= Pr(no chiasmata in T)

 (5.4) = Z Pr((Cl, ..., CL-1) = C).
 c<(1-t)

 Lange (1997) derives an expression

 (5 5) Pr((Ri ... , RL-1) = r) =_ (_)L1L-)rz?
 t

 by a different method, again with notation differing slightly from ours. (Here,

 < r, t > is the inner product Ej rj tj.) Rather than deriving this equation directly,
 we use equation (5.4) to show that (5.2) and (5.5) are equivalent. Substituting (5.4)
 into (5.5) we obtain

 E (-1)< r,t> t = E(-1)<r,t> E Pr(C = c)
 t t ic<(l-t)/

 = E (?E (1)<rt>) Pr(C c).
 c t<(l-c)

 Equating coefficients of Pr(C = c) from (5.2), to complete the proof we need only
 show that for each r and c

 21-lI{c >r} r = (1)<r,t
 t<(1-c)

 where I{c > r} = 1 if c > r, and 0 otherwise. Consider first the case c > r. Then
 r3=1 = c;-l > tj = O, so < r,t >= 0 and we sum terms (+1) over 21 1c'
 values of t, confirming this case. Now consider any other c, and consider any one

 component j for which rj = 1 but cj = 0. Thus 1- cj = 1, and we sum over
 tj = 0 and tj = 1. For each set of values of the other tj,, the two values of tj give
 opposite signs to (-l)<r,t>. The coefficients cancel, and the overall coefficient is 0,
 as required. This completes the proof.

 Given a model which determines either Pr(C = c) or Ot, exact computation of
 probabilities Pr(R = r) of all patterns of recombination and non-recombination
 in a set of L - 1 marker intervals is practical for L up to about 12. Two methods of
 likelihood evaluation under interference have been proposed: both rely on efficient
 computation of these probabilities. Weeks et al. (1993) provides an approach
 for models of count interference (see section 5.6), while Lin and Speed (1996)
 provides a method for the renewal process chi-square models of position interference
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 5.5. CHROMATID INTERFERENCE 75

 (section 5.7). For a fixed marker map, it is feasible to precompute and store

 these probabilities for up to about 12 markers (211 = 2048). However, using these
 probabilities in any exact computation of a likelihood on a pedigree usually entails

 highly computationally intensive procedures, further limiting L and/or the pedigree
 sizes and structures that can be considered.

 5.5 Chromatid interference

 Where only one of the four gametic products of meiosis can be observed, it is
 hard to find evidence for chromatid interference. However, the non-negativity
 of probabilities P(C = c) in equation (5.2) does impose constraints on feasible
 recombination pattern probabilities P(R = r). Conversely, observed frequencies
 of patterns of recombination can provide evidence for the existence of chromatid

 interference. We consider now one specific constraint implied by Mather's formula,
 whose violation may provide evidence for chromatid interference (Fisher, 1948).
 Mather's formula (5.1) implies that recombination probabilities are an increasing
 function of genetic distance, bounded above by 2. Under chromatid interference
 this is no longer so. Consider, in particular, the case of complete positive chromatid
 interference: in that case, successive chiasmata involve alternating disjoint pairs of
 non-sister chromatids. Then the recombination probability at genetic distance d is

 1
 p(d) = -Pr(N(d) odd) + Pr(N(d) even but not divisible by 4).

 2

 In the case when the chiasma process is a Poisson process rate 2, this becomes

 p(d) = 2exp(-2d) ( ((2k+ + 2 (4k+2)

 1
 - -(1-exp(-2d) cos(2d)).

 2

 In this case, p(d) is greater than - at certain distances, and is not monotone. 2

 Fisher (1948) discusses possible evidence for p(d) > - in the case of the 2

 pseudoautosomal region of the mammalian sex chromosomes in mice; Weinstein
 provides an interesting contribution to the discussion.

 Another possibility is complete negative chromatid interference: in this case every
 chiasma on the tetrad involved the same pair of chromatids. Then half the gametes
 would show no recombination, but in the other potential two gametes from a meiosis
 every chiasma results in a crossover. Again, when chiasmata occur as a Poisson
 process rate 2,

 1
 p(d) = 2-Pr(N(d) odd) = (I- exp(-4d)).

 Note that when d is small, p(d) d, as usual. However, at large genetic
 distances, only one half of the gametes show independent segregation, the other half
 apparently showing tight linkage. With multilocus data, such an extreme pattern of
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 76 CHAPTER 5. MODELS FOR MEIOSIS

 recombination would be detectable. A less extreme pattern might simply be thought
 to be due to heterogeneity of recombination among meioses. Chromatid interference
 is very much confounded both with other forms of interference, and interference in
 general may be confounded with heterogeneity in recombination. For the remainder
 of this chapter we consider only models with no chromatid interference.

 To ensure a biologically feasible interference model, a model of chiasma formation
 in the chromatid tetrad at meiosis is desirable. Under the no-interference model

 (Haldane, 1919), chiasmata, and hence crossovers, arise as aL Poisson process; the

 count on a chromosome arm has a Poisson distribution, aihd conditionally on the
 count their positions are independently and uniformly distributed (all distributions
 being in terms of genetic, not physical, distance). Thus, in the absence of chromatid
 interference, there are, broadly, two classes of interference model: count interference
 and position interference.

 5.6 Count-location models for chiasmata

 In a count-location model, the count of chiasmata on a chromosome arm is no

 longer necessarily Poisson, but conditional upon the count, they are independently
 and uniformly distributed. In such models

 ot = (< t, d >)

 where dj is the genetic length of interval Ij. That is, the chiasma avoidance
 function depends only on the total length of chromosome avoided. Such models
 have been considered by Liberman and Karlin (1984), who call the corresponding
 map functions p(d) multilocus feasible.

 Suppose that the probability mass function of the total number of chiasmata N
 on a chromosome arm length A Morgans has probability generating function 9N ().
 Then, given N = n, the probability of no chiasmata in length d is (1 - d/A)n, and

 00d

 (5.6) q(d) = Pr(N = n)(1 - -) = 9N(1 - d/A)
 n=O

 with corresponding map function, from Mather's formula,

 (5.7) p(d) = 2(1 - (d)) = 2(1 - 9N(1 - d/A)).
 2 2

 Note that the expected number of chiasmata N in length A of chromosome is, by
 the definition of genetic length, 2A.

 Consider now some simple examples:

 (1) Suppose N has a Poisson distribution with mean 2A: N P(2A)
 Then gN(W) = E(wN) = exp(2A(w - 1)) and from equation (5.6),

 0(d) = exp(2A(1 - - 1)) = exp(-2d)
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 and from equation (5.7) we have again the no-interference equation (4.2).

 (2) Another tractable count-location model is given by assuming a fixed maximum

 number K of chiasmata on a chromosome, and that N - B(K, 2), with 2A =
 E(N) = K/2.

 Then gN(W) = E(wN) = (-(1 + z))K and from equation (5.6),

 (d) ( (2- d))K (1-d )4A

 For large chromosomes, there is little interference: 0(d) becomes close to the non-
 interference value exp(-2d). On small chromosomes there is stronger interference.

 For example, if A = 2, 0(d) = (1 - d)2, p(d) = d(l - -d); the avoidance probability
 is smaller, and the recombination probability larger, than in the absence of
 interference.

 (3) It appears to be be a biological reality, that for correct division of the
 chromosomes in the first meiotic division (Figure 5.1(d) to Figure 5.1(e)), each
 chromosome pair should have at least one chiasma. Note that under any such
 model N > I so that A = 1E(N) > 2; in fact, even the smallest human
 autosomes have genetic length estimates just over 0.5 Morgans. One example
 of a model which incorporates this restriction is the truncated Poisson model, in

 which N has a Poisson distribution (N P1(a)) conditioned on N > 1. Then
 2A = E(N) = a/(1 - exp(-a)), and A is an increasing function of a, increasing
 from 2 when a = 0. Then

 2

 exp(a (w - 1)) - exp(- a) exp(a (1 - d)) - 1
 1 - exp(-a) exp (a) - 1

 (4) An alternative model incorporating the restriction N > 1 is that due to Sturt
 (1976), in which N has a shifted, rather than truncated, Poisson distribution:
 (N - 1) P(2A - 1). Then

 9N(W) = wexp((2A - 1)(w- 1)) and q(d) = (1- d)exp(-(2A- 1)- d

 The Sturt model has been found to fit existing data well (Weeks et al., 1993).
 All the models (2),(3) and (4) are close to the Haldane model on large

 chromosomes, but show different departures on small chromosomes. It is an
 unfortunate feature of count-location models that the recombination probability
 at genetic distance d is determined by the length of the chromosome and the
 distribution of N on the entire chromosome.

 5.7 Renewal process models of chiasma formation

 Although count-location models are convenient, mathematically, it is implausible
 that, given N, chiasmata are independently located. In particular, the consequence
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 that the chiasma avoidance function depends only on total length avoided is
 unrealistic. Consider two intervals, lengths d1 and d3 separated by an interval
 length d2. Then, for a count location model, the probability

 0(1,0,1) = P(C1 = 0,C3= O) = 0(d1 +d3)

 and is independent of d2. Position interference models allow for more general
 meiotic processes; we will consider only those where chiasmata arise as a stationary
 renewal process (Speed, 1996; Lange, 1997). This imposes certain restrictions on
 the map function p(d), which are discussed by Speed (1996); subject to these
 restrictions, the renewal density is -p"(d).

 We consider briefly some examples: more details are given by Speed (1996) and
 references therein.

 (1) Suppose chiasmata occur along the tetrad bundle as a Poisson process, rate

 2, so that the interarrival time distribution is exponential with mean 2, and has 1 ~~~~~~~~~~~~~~~~~~~~~2'
 probability density function 2 exp(-2d). Integrating twice, and imposing the

 conditions p(O) = 0, and p'(0) = 1, we obtain again equation (4.2), confirming this
 interpretation of the no-interference model.

 (2) Kosambi (1944) proposed a map function

 p(d) = -tanh(2d) = (exp(4d) - 1
 2 2 \exp (4d) +1/

 which satisfies the conditions detailed by Speed (1996) and results in a renewal
 density

 16 (exp(2d) - exp(-2d))
 (exp(2d) + exp(-2d))3

 Although this map function is not multilocus feasible in the sense of Liberman and
 Karlin (1984), it has a valid interpretation as the result of a renewal process model
 for chiasmata. The renewal process class of models includes almost all of the map
 functions proposed in the literature, but not the Sturt map function.

 (3) Although the Sturt count-location model has no renewal process analogue,
 the truncated Poisson distribution does (Browning, 1999). This shows that two
 quite different processes can lead to same map function (Speed, 1996). Further,
 Browning (1999) has shown that a zero-modified Poisson distribution is the
 unique model that is both a count-location and a stationary renewal-process.
 (This includes, of course, both the Poisson model and the truncated Poisson model.)

 (4) A flexible and simple renewal-process model is the chi-square model (Zhao et al.,

 1995). The renewal density is a scaled X2 with the scaling (4(m + 1))-1 such
 that the expected inter-arrival distance is I. One interpretation of this model
 is that potential chiasmata occur as a Poisson process and that every (m + l)th
 such potential chiasma becomes an actual chiasma. These models fit data well
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 5.7. RENEWAL PROCESS MODELS OF CHIASMA FORMATION 79

 (Zhao et al., 1995), and have properties that make recombination probabilities over
 several loci, and hence likelihood computations on pedigrees, somewhat tractable
 (Lin and Speed, 1996). A generalization of the chi-squared model is the Poisson-skip
 model (Lange, 1997). In this case, the r th potential chiasmata becomes one with
 probability fr. The renewal density is a mixture of chi-squared (x2) distributions,

 with the scaling of genetic distance again chosen such the mean inter-arrival time
 of the chiasma process on the tetrad is 2

 2
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 Chapter 6

 Likelihoods on Pedigrees

 6.1 The Baum algorithm and "Peeling"

 We review here the algorithm given by Baum (1972) for the computation of the
 likelihood in a hidden Markov model. The procedure is general to any stochastic

 system with discrete-valued latent variables S.,j with a first-order Markov structure,
 and outputs Y.,j depending only on S.,j. However, for convenience, we retain the
 notation of section 4.7 with meiosis indicators S.,j and phenotypic data Y.,j for locus
 j, with loci ordered j = 1, . . . , L along a chromosome. The dependence structure is
 shown in Figure 6.1. The Baum algorithm can proceed in either direction, and both
 formulations will be given. For closer analogy with pedigree peeling (section 6.3),
 we consider first the backwards computation, which is less natural for time series.

 On a pedigree, data are usually on the final generations. In time series or signal
 processing, on the other hand, data are observed forwards in time and prediction

 is often the question of interest.

 For data observations Y = (Y., ,j = 1,... , L), we want to compute Pr(Y). Due

 to the first-order Markov dependence of the S.,j, equation (4.10) can be written

 Pr(Y) = Pr(S, Y) = E Pr(Y I S) Pr(S)
 s s

 (6.1) = (Pr(S.i) jyr(S.,j I S.,j- ) LfPr(Y.,j I S.j)
 S j=2 j=1

 Now define

 Rj(s) = Pr(Y.,k,k= (j+1),...,L I S.,j =s)

 with RL (S) = 1 for all s. The conditional independence structure (Figure 6.1),

 provides that {Y.,k, k = (j + 1). ... , L}, Y.,j, and S.,j_ are mutually independent
 given S.,j.

 81
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 S,1 S*}J-I S.7 S.,L

 Y., Y.1jz Y., j Y.,iL

 FIGURE 6.1. The conditional independence structure of data, in the absence of genetic
 interference

 Thus,

 Rj-1 (s) = E [Pr(S.j = s* S.j = s)
 S*

 (6.2) Pr(Y.,j I S.,j = s*) Rj(s*)]

 for j = 2, ..., L, while at the final step

 Pr(Y) = E [Pr(S.,i = s*) Pr(Y.,i I S.,l = s*)Rl(s*)]
 S*

 Thus the L-dimensional sum (6.1) may be computed as a telescoping series of one-

 dimensional sums over the possible values s* of each S.,j in turn, computed for
 each possible value s of S.,j1. Where each S.,j can take only a small number of
 possible values, this makes practical and feasible the computation, even for very
 large values of L. In fact, the computation is linear in L.

 In the case of meiosis indicators, the direction along a chromosome is irrelevant
 and

 Pr(S.,j = s* I S.,j- = S) = Pr(S.,j1 = s* I S.,j = s)

 However, in general only the forward transitions Pr(S.,j = s* I S.,j1 = s) may
 be readily available. Even in this case, peeling in the direction from 1 to L is

 also possible. For convenience, we define Y(i) = (Y,i,...,Y.,j), the data along
 the chromosome up to and including locus j. Note Y = y(L). Instead of the
 conditional probability

 Rj(s) = Pr(Y.,k,k=((j+1), ... , L) I S.,j = s)

 it is now more convenient to define the joint probability

 Rj* (s) = Pr(Y.,k, k = 1, .. ., -1, S.,j = s)

 = Pr(Y(-1), S.,j = s)
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 6.2. EXACT LIKELIHOODS FOR MULTIPLE MARKERS 83

 with Rr(s) = Pr(S.,j = s). Now equation (6.2) is replaced by

 Rj+1 (s) = Z[Pr(S.,j+l = s I S.j, = s*)
 S*

 (6.3) Pr(Y.,j I S.,j = s*) R(S*)]

 for j = 1,2,...,L-1, with

 Pr(Y) = P Pr(Y.j | = S*) RL(s*).
 S*

 We return to these equations in sections 6.2 and 6.4 in the context of likelihood
 computations on the basis of data observed on members of a pedigree. We note

 here only that efficient computation of the penetrance probabilities Pr(Y.,j I SIJ)
 (section 3.6) is key to the implementation.

 6.2 Exact likelihoods for multiple markers

 Exact likelihood computations on pedigrees rely on algorithms analogous to the

 Baum-type peeling algorithms of the previous section. One form in which the
 approach applies quite directly is the methods of Lander and Green (1987). The
 likelihood of equation (3.9) of section 3.6 is

 L = Pr(Y) = E Pr(Y I J(S)) Pr(S)
 s

 where J(S) is the gene ibd pattern among observed individuals determined by

 meiosis indicators (inheritance vectors), S. Since the inheritance vectors S = {S.,j}
 (equation (1.2)) are first-order Markov over loci j, and the data Y typically partition
 into data Yj relating to each locus j (see section 4.7), the likelihood takes the form
 equivalent to equation (4.11):

 L z (iPr(Yi I J(S,j))) (Pr(S.i) J Pr(S.,j I S.,jI,) I

 which is directly analogous to equation (6.1) of section 6.1. Thus, either the
 forwards (equation (6.3)) or backwards (equation (6.2)) computation method can
 be applied.

 Note however that this exact computation is limited to very small pedigrees. If

 there are m meioses on the pedigree, then S.,j can take 2m values, and in moving

 along the chromosome, we must consider transitions from the 2m values of S.j, to
 the 2m values of S.,j+3. For a pedigree with n individuals, f of whom are founders,
 m = 2n - 3f. In practice we are limited to pedigrees where m is no more than
 16. Additionally, for each locus j, and for each value of S. j, we must compute

 Pr(Y.,j I J(S.,j)). For marker loci, computation is straightforward for given S.,j,
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 but again this limits the number of S.j that can be considered, and hence the size
 of the pedigree.

 With data increasingly available at multiple linked marker loci, calculation
 of likelihoods using such data is desirable. While there may be uncertainties
 about marker locations, or other aspects of the marker model such as allele

 frequencies, these are normally assumed known. Rather than the linkage lod-scores
 of section 4.3, a location score curve is computed (Lathrop et al., 1984; Lange, 1997).
 This is equivalent to the curve of lod scores for linkage of the trait plotted
 as a function of hypothesized trait-locus location d against a fixed map of
 markers. Specifically, the map-specific lod score is log1o(L(d)/L(cx)), where d is
 the hypothesized chromosomal location measured in genetic distance, and d = oo
 corresponds to p = 2' or absence of linkage. The location score is defined as

 2 log,(L(d)/L(oo)). Under appropriate conditions, this statistic has approximately
 a chi-squared distribution in the absence of linkage (see section 2.2). Clearly, the
 location score is simply 21oge (10) or about 4.6 times the map-specific lod score.
 In this book, we shall consider lod scores for gene location, rather than location

 scores. The location lod score curve differs from the linkage detection lod scores of

 section 4.3 in that the likelihood is considered as a function of trait locus position,
 and not maximized over this parameter. Other parameters of the trait model, such
 as penetrances or allele frequencies, may be assumed known, or may be maximized
 over to obtain a profile log-likelihood curve for the trait locus location. We return to
 location lod score curves in later chapters, noting here only that fast computation
 of many multipoint linkage likelihoods is needed to obtain such a curve.

 Efficient methods using the algorithm of this section have been developed over
 the last few years by Kruglyak and co-workers. Kruglyak et al. (1995) show how to
 use the dependencies in the Markov transitions to reduce the computational burden
 from order 2m x 2m to order m2m, almost doubling the size of pedigree that can be
 considered. Kruglyak et al. (1996) give an algorithm for the efficient computation of

 the penetrance probabilities Pr(Y.,j I S.,j): see section 3.6. Most recently, Kruglyak
 and Lander (1998) have used a discrete Fourier transform representation to achieve
 greater efficiencies. While these methods have greatly increased applicability of
 the algorithm, procedures are intrinsically exponential in pedigree size, and thus
 limited to pedigrees of moderate size. Moreover, increased efficiency comes at the
 expense of decreased flexibility. Use of parental symmetries restricts the programs
 to equal male and female genetic maps, and efficient computation is possible only
 where single-locus marker genotypes are observed without ambiguity or error.

 6.3 Computations on large but simple pedigrees

 In section 1.3, equation (1.5) gave the form of the probability of data observations
 on a pedigree:

 Pr(Y) = E ( fI Pr(Y2 I Gj)) Pr(G).
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 6.3. COMPUTATIONS ON LARGE BUT SIMPLE PEDIGREES 85

 This probability is the likelihood for the genetic model underlying the phenotypic
 data Y. How is this likelihood to be computed? While each term of the product
 can be easily evaluated, the difficulty is in the sum over G. On a very small
 pedigree it may be possible to enumerate all possible genotypic configurations G,
 and to compute the sum directly. In other special cases it may be possible to

 use a recursive algorithm to compute the gene identity pattern probabilities in the
 observed individuals, and hence to compute the marginal probability P(G) for these
 individuals alone. However, in general this is impractical. Independently, Hilden
 (1970), Elston and Stewart (1971), and Heuch and Li (1972) laid the foundations

 of the approach that has been widely used over the last 20 years, and has made it
 possible to compute likelihoods of genetic models given data on large pedigrees.

 The approach formalized by Elston and Stewart (1971), for simple pedigrees, was
 a generalization of the backwards Baum algorithm (equation 6.2). The approach
 uses the approach of section 6.1 but generalized to pedigree structures, using
 individual genotypes as the latent variables. The summation proposed by Elston

 and Stewart (1971) was sequential, and used only the functions R(.), so that
 pedigree structures were limited to those where summation can proceed always up
 a pedigree. Hilden (1970) used joint probabilities, analogous to the functions R* (.),
 and identified individual genes, so his procedure was, in principle, more general.
 The program of Heuch and Li (1972) was recursive, using functions both analogous
 to R(.) and to R*(.), but was limited to simpler genetic models. The approach was
 generalized to arbitrary pedigree structures by Cannings et al. (1978), who gave
 it the name "peeling" and the functions R(.) and R* (-) the name "R-functions".
 However, the idea of conditioning in this way when computing probabilities on
 pedigrees can be traced at least to Haldane and Smith (1947).

 The basic idea is simply one of efficient sequential summation. The number of

 terms in which a specific Gi, the genotype of individual i, appears is limited to the
 penetrance term for that individual, and to segregation terms from the parents and
 to the offspring of individual i. Thus performing a summation over the possible
 values of Gi results in a function of (at worst) the genotypes of i's parents, spouses
 and offspring. Of course, this is only useful if implemented sensibly. By starting at
 the edges (top/bottom/side) of the pedigree, one limits the number of individuals
 whose genotypes must be considered jointly. For a pedigree without loops, there
 are (many) sequences of nuclear families such that each is connected to the as
 yet unprocessed part of the pedigree via a single individual, the pivot. In this

 case, summation over the non-pivot members of each family leads to a function of
 only the pivot genotypes, which may be incorporated into the summation for that
 individual in due course. This sequential summation process has come to be known

 as "peeling", and the specification of the order of individuals (normally of nuclear
 families) in which summation will be carried out as the "peeling sequence". We
 work through an example in detail in the following section.

 The procedure is just the same for linked loci. The (multilocus) genotype of an
 individual is an unordered pair of multilocus haplotypes. That is, it is a specification
 of not only the single-locus genotypes, but also phase information. The segregation

 probabilities Pr(Gi iGMi , GFJ) are functions of the recombination fractions. If there
 are two diallelic loci, there are 4 haplotypes, and hence 10 genotypes; computation
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 86 CHAPTER 6. LIKELIHOODS ON PEDIGREES

 is quite possible for a pedigree without loops. With more loci, or more alleles,
 computation rapidly becomes infeasible. The programs using this approach have
 greatly improved (Cottingham et al., 1993), and computer speed increases also.

 However, the algorithm is intrinsically constrained by the number of multilocus

 segregation probabilities Pr(Gi GMi, GFJ), and hence depends on the cube of the
 number of possible genotypes per individual, which is exponential in the number

 of loci to be considered jointly.

 6.4 Example of peeling a zero-loop pedigree

 As an example of the peeling method of section 6.3, consider the pedigree of
 figure 6.2. This pedigree is a general zero-loop pedigree, in that it contains multiple
 founder couples and an individual with two spouses.

 21 22 12 13

 10 1 1 .2 3--.20 17 15 14 1 4

 9 8 ~ ~ 19 16 6 5 2 3

 FIGURE 6.2. Pedigree without loops. Shaded individuals are those for whom phenotypic data are
 assumed to be available

 Starting with the family to the right, we may compute

 Ri(g) = Pr(Y2,Y3 I G1 = g)

 E Pr(G4 = 9*) = Pr(Y2lG2= g')Pr(G2 = g'1G = g, G4 = 9*) 9( 9)

 1: Pr(Y3lG3 = g")Pr(G2-=g"IG, = g, G4 = 9*)\
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 This is a generalized version of equation (6.2), where now there are two offspring
 nodes (2 and 3) and one parent node (4) to be summed over, whereas previously
 the structure was linear. Here the individual 1 is the pivot connecting this nuclear
 family to the remainder of the pedigree. Note that we do not need to include a term
 for the phenotypes of individual 4, since this individual is unobserved. Similarly
 for the family {5, 6, 7}, 6 is the pivot and

 R6(9) = Pr(Y5,Y7 I G6 = 9)

 = S Pr(Y5 JG5 = g*)Pr(G5 = 9*)
 g

 (S Pr(Y7lG7 = g')Pr(G7 = g'1G6 = g,G5 = 9*))

 The other two peripheral families with a parent pivot may be handled similarly:

 Rll(g) = Pr(Ys,Ys I G11 =g)

 = EPr(Glo = g*)
 g*

 (E Pr(Y8 G8 = g')Pr(G8 = g'IGnl g, G1o = g*)

 (SPr(Y91G9 = g")Pr(G9 = g"IGij = g,G10o = g*)
 91/

 and

 R(1l)(g) P(Y191G17 =g)

 = E Pr(G2=P 9*)
 g*

 (ZPr(Y19 G19 = g')Pr(G19 = g'G17 = g,G20 = 9*)

 Note that for this last family, this is only a part of the information connecting to
 individual 17 via her offspring. The superscript indicates that only her first family
 (spouse 20 and offspring 19) is included. Individual 17's other family is not yet
 a peripheral family; it will be considered below. Where an individual is a parent
 in multiple families, the families may be considered separately; appropriate book-
 keeping must ensure that every term in equations (1.4) and (1.5) is entered once
 and once only.

 Now no remaining peripheral family has a parent pivot. Thus, to proceed further
 across the pedigree, we must consider an R*-function. For example, since R1 (g)
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 88 CHAPTER 6. LIKELIHOODS ON PEDIGREES

 has been computed, the family {1, 12,13,14} is now peripheral, and has pivot 14.
 First, summing conditionally upon the parents' genotypes,

 Pr(Y2,Y31G12 = g*G13 =') = EPr(Gi = gIG12= g*,G13 = g')Ri(g).
 g

 Then we may sum over these parental genotypes (G12,G13) to obtain

 R14(9) Pr(Y2,Y3,G14 = 9)

 - E (Pr(G12 = g*)Pr(Gl3 = 9')
 g* ,g

 (6.4) Pr(Y2,Y3fG12 = g*CG13 g')Pr(G14= gIG12 = C%G13-9'))

 Because this function is the probability of data connected to individuals 14 via his
 parents, we now have a joint probability of G14 rather than one conditional on G14.
 However, the transition probabilities are still the downwards transition probabilities
 of offspring conditional upon parents. The terms are simply the relevant terms of
 equations (1.4) and (1.5). Note also that the data on this part of the pedigree
 remains (Y2, Y3); these are the only observed individuals in this part. Finally, note
 that, although the segment of pedigree is "above 14" in the sense of being connected
 to him through his parents, it includes his nephew and niece, 2 and 3.

 At the next step, we combine the data on 2 and 3, with that on 5 and 7. First,
 conditional on parental genotypes (G14, G15)

 Pr(Y5, Y7 I G14 = g*,IG15 g') = ZPr(G6 = gIG14 g9*, G15 = g')R6 (9)
 9

 Then, summing over (G14, G15) and including the probabilities computed in
 equation (6.4),

 R*~(g =Pr(Y2,Y3,Y5,Y7,CG =g
 R16 (9) = ry,5 5 7 16 = 9)

 S E (R~14(g*)Pr(GCi g')Pr(Y5,Y7 I G14 = gCl5 =
 g* ,g

 At this point, we again have a peripheral family, with a parent pivot, and we may
 include the data on 16 and 18 to obtain

 R (2)(g) = Pr(Y2, Y3Y5, Y7, Y16, 8 CG17 = 9)

 (R*6(g*)Pr(YlC6G16 =9*)
 9*

 E Pr(Yis 8IGC = g')Pr(Gls = g'IG1i = 9,G15 = 9*))
 9I

 The penetrance probability Pr(Y16IG16 = g*) is included only when individual 16
 is to be summed out of the expression. This is just the convention we employ; the
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 6.4. EXAMPLE OF PEELING A ZERO-LOOP PEDIGREE 89

 important thing is that this term is included once and once only for each possible
 genotype of 16. In programming, where there are many zero penetrances, it may
 be desirable to incorporate the penetrance where an individual such as 16 is first

 encountered, since this will reduce the number of non-zero terms that must be
 carried forward. Note also that the individuals 2 and 3, who are not biologically
 related to 17 are "below" her, in the sense that the information their phenotypes

 provide on the genotype of 17, is through her offspring, 18. We may now combine
 the information from 17's two families:

 R17(g) = Pr(Y2, Y3, Y5, Y7, Y16, Y1s, Y19 I G17 = 9)

 R(2) (g)R(1) (g)

 Now finally there is only one remaining family; any member of this family may
 serve as the final pivot. For example, with a parent pivot

 R21(g) = Pr(Y2,Y3,Y5, Y7, Y8, Yl9Yl,yis, y19Y23, Y24 1 G21 = 9)

 x: (Pr(G22 = 9*)

 (S Pr(Y23jG23 = g')Pr(G23 = g'lG21 =g,G22 = 9*)

 ( Pr(Y2 4IG24 = g')Pr(G24 = g" lG21 = g,G22 = 9*)

 (ER17(g')Pr(G17 = g' G21 = 9, G22 = 9*))

 (z R1l (g')Pr(Gil = g'1G21 = g,G22 = 9*)))

 and finally the overall likelihood is

 Pr(Y2,Y3,Y5,y7,Y8,Y9,Y16,Yi8,Yl9,y23,y24) = ER21(g)Pr(G21 =9)-
 9

 Into this final sum, all founder probabilities, all parent-pair to offspring transmission

 probabilities, and all penetrance probabilities for observed individuals have been
 included once and only once. Also, all R-functions computed in the course of
 the procedure have been included at a subsequent stage. Note also that each

 summation is over the genotypes of a single individual, and the maximum number

 of terms that must be computed at an intermediate stage is the number of possible
 ordered genotype pairs for a pair of parents. Even for simple pedigrees, peeling
 becomes infeasible if there are multiple loci with multiple alleles. The number of
 ordered pairs of genotypes to be considered can be too large, each genotype being
 an unordered pair of multilocus haplotypes.
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 90 CHAPTER 6. LIKELIHOODS ON PEDIGREES

 6.5 Computations on complex pedigrees

 The Elston-Stewart approach was generalized to complex pedigrees and more
 complex genetic models by Cannings et al. (1978; 1980). The Hilden (1970)
 approach also dealt, in principle, with arbitrarily complex pedigrees. For a pedigree
 with loops, functions on the genotypes of a cutset of individuals may have to be
 considered. This is a set of individuals who divide a processed segment of pedigree,
 from the unprocessed part. The processing therefore results in a function over the
 set of all possible genotype combinations for the individuals in the cutset. Even for
 a single autosomal diallelic locus, with 3 possible genotypes for each individuals,
 there are 3n potential genotype combinations for n individuals. (In general, K', for
 K genotypes.) In this case, the objective of a good peeling sequence is to limit the
 cutset sizes as much as possible. Even so, on very complex pedigrees, with multiple
 intersecting loops, peeling becomes infeasible, particularly if there are more alleles,
 or more loci.

 As an example, we outline a sequence of peeling operations to compute a
 likelihood on our standard example pedigree (figure 3.1), using the labeling of
 individuals of that figure. As in the case of a zero-loop pedigree, there are many
 alternative ways to work through a pedigree. Indeed, in principle summations may
 be done in any desired order. The order we give here is straightforward in that
 terms relating to a single whole marriage node are dealt with at each step. It is
 complicated, in that we traverse the pedigree partly upward and partly downward,
 to show the range of possibilities. For greater generality, we assume phenotypic
 data may be available on any of the individuals. We give the sequence of functions
 computed, but not the details of the equations. Within a given family the equations
 are of similar form to those of the previous section.

 First we peel the final individual 531:

 R432,431 (91, 92) = Pr(Y531 I G432 = 91, G431 = 92).

 Next we might sum over the genotypes of individual 431 to obtain

 R432,331,334 (91, 92, 93) = Pr(Y531, Y431 I G432 = 91, G331 = 92, G334 = 93)

 and then over 334 and her founder parent 235 to obtain

 R432,331,233 (91, 92, 93) =

 Pr(Y531, Y431, Y334, Y235 I G432 = 91, G331 = 92, G233 = 93).

 At this point, there is no way to avoid a cutset of size four after the next step. The
 current members {432, 331, 233} are offspring of three different nuclear families. To
 show the method, we choose to deal next with the founding family of the pedigree,
 so that 233 is replaced by her two siblings 231 and 232 in the cutset. The resulting
 function is in part conditional, and in part joint, since the section of the pedigree
 whose contribution to the likelihood has been computed connects to 432 and 331
 through their offspring, but to 231 and 232 through their parents. Finally, since
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 6.6. MODELS WITH GAUSSIAN RANDOM EFFECTS 91

 the segment of pedigree analyzed is growing unwieldy, we introduce the notation

 YD for the phenotypic data on a set of individuals D. Then we have

 R432,331,232,231 (91, 92, 93, 94) -

 Pr(YD1,G232 = 93,G231 = 94 I G432 = gi,G331 = 92)

 where DI = {531,431,334,235,233,131,132}. Now since both 231 and 331 are in
 the cutset, we can reduce the cutset size by peeling the nuclear family of which

 they are both members, to obtain

 432,332,232(91, 2, 93)= Pr(Y2, G332 = 92, G232 = 93 d G432 = 91)

 where D2 = Eh U{231,331,236}. Then

 R432,32,33 ( 92, 93)= Pr(YD3 , G332 = 92, G333 = 93 G432 = 91)

 where P3 = D2 U{234,232}. Finally, incorporating the genotypic transmissions
 and phenotypic data on this 3-member nuclear family, and summing, we have the
 overall probability of all the data observed on the pedigree.

 The scheme presented here, of peeling one nuclear family at a time, is a special

 case of more general procedures. Clearly, summations may be carried out in any

 order. Sometimes, it is more effective to peel several nuclear families simultaneously.
 Sometimes, some of the parent-pair offspring relationships within a family may
 be incorporated, leaving the others for later. Generally, whenever there is an R-
 function on two or more offspring of a nuclear family, it is efficient peel them,

 replacing them in the cutset by their two parents. It is also not necessary to peel by

 genotypes. Instead it can be more efficient to distinguish the maternal and paternal
 genes of individuals, and sum separately over these. This increases the number of
 genotypes, but can simplify the dependence structure of the data. Methods of gene-

 peeling were considered by Harbron and Thomas (1994) and by Harbron (1995).
 The simplification of the neighborhood structure due to considering genes rather

 than genotypes was shown in Figure 1.3.

 6.6 Models with Gaussian random effects

 We return briefly to the polygenic model of equations (2.15) and (2.16), introduced
 in section 2.6. Elston and Stewart (1971) noted that, since for a multivariate

 Gaussian distribution all marginal and conditional distributions are also Gaussian,
 and since a Gaussian form is specified by its mean and variance, the peeling process
 can also be used to compute the likelihood for a, and for other parameters, such

 2
 as an environmental variance 5e. In this case, the sequential summation is just
 successive integration of latent additive genetic effects. Also, the inverse of the
 variance-covariance matrix A1 of effects z is sparse, involving only terms for
 members within a nuclear family.

 Additional Gaussian latent effects can be incorporated, for example effects
 of shared environment (Cannings et al., 1980). Also complex pedigrees are no
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 92 CHAPTER 6. LIKELIHOODS ON PEDIGREES

 problem, in principle. In fact, the computational process is simpler than for discrete

 genotypes. In place of Kn discrete genotype combinations for n cutset individuals

 each of whom may have any of K genotypes, we now have a n-variate Gaussian

 distribution, specified by n means, and n((n + 1)/2 covariance terms. The sequential
 Elston-Stewart summation method becomes a sequential integration of Gaussian

 densities.

 A more general model for a quantitative trait is the mixed model (Morton

 and MacLean., 1974), which combines the Mendelian and polygenic models of

 section 2.6. The model for the quantitative phenotype, Yi of individual i becomes

 (6.5) Yi = (Gi) + Zi + Ei

 where Gi is the genotype, and Zi is the polygenic value (see equations (2.14)
 and (2.16)). The transmission model for Zi is as in equation (2.15). Even for
 this simplest version of the mixed model, without other Gaussian or discrete

 components, peeling is infeasible. The overall likelihood is a mixture of multivariate

 Gaussian components, the number being the number of possible configurations of
 major genotypes G on the pedigree:

 L = Pr(Y) = E (Pr(G) jPr(Ylz, G)dP2 (z))

 (6.6) j (ZP (YIz,G)Pr(G)) dP,2(z)

 where P,2 (z) is the multivariate Gaussian distribution of z (equation (2.15)). These
 forms for the likelihood show that for given G it is possible to integrate over z for the

 Gaussian form Pr(YIz, G), and that for given z it is possible to sum over G using the
 Elston-Stewart algorithm or its generalizations. A general discussion of propagation

 of probabilities on graphs, for both continuous and discrete latent variables, is given

 by Lauritzen (1992). It is of interest that the dependence structure of discrete
 and continuous variables of the genetic mixed model falls within the framework of
 Lauritzen (1992) for full exact computation of a likelihood. However, the pattern

 of dependence among the components of Y, G and z means that, wherever data
 are observed on the pedigree, it may be necessary to compute separately the

 contribution from each component of the mixture of Gaussian distributions, one

 for each value of G. Generally, in the context of data on extended pedigrees, it is
 impossible both to integrate over z and sum over G to obtain an exact value for

 the likelihood L. We return to this in section 9.4, where Monte Carlo methods of
 estimation of mixed model likelihoods are presented.
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 Chapter 7

 Monte Carlo Estimates on

 Pedigrees

 7.1 Baum algorithm for conditional probabilities

 While the above method of likelihood computation was known to Baum (1972), his
 primary aim was estimation of the transition probabilities of the Markov chain, and
 of the probability relationship between input and output (Baum and Petrie, 1966;

 Baum et al., 1970). Here, these are transition probabilities P(S.,j+1 = s I S.,j = s*)
 and penetrance probabilities P(Y.,j I S.,J). If the latent variables S were observed,
 the sufficient statistics for estimation of these transition and penetrance parameters
 would be simple functions of Y and S. Thus, to estimate parameters of the model,
 for example by using an EM algorithm (Dempster et al., 1977), one must impute
 these functions of the underlying S conditional on Y. Again, here we use the
 notation of meiosis indicators of section 4.7, but the framework is general to any
 hidden Markov model.

 Thus, the forward-backward algorithms of Baum et al. (1970) address inter alia
 the computation of marginal probabilities

 Qj(s) = Pr(S.,j = s I Y), j = 1,...,L.

 We define two functions

 Qt(s) = Pr(S.,j = s I Y())

 Q*+(s) = Pr(S.,j+l = s I Y(i)).

 The function Qj (.) provides the imputation of S.,j given data Y(i) up to and
 including locus j, while Q*+j (.) is the predictor of S.,j+1 also given Y(i)
 (Y.,i).. ,Y*,j).

 Then Qt(s) = Pr(S.,i = s I Y.,i),

 93
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 94 CHAPTER 7. MONTE CARLO ESTIMATES ON PEDIGREES

 Q*+1(s) = Pr(S.,j+l = s y(i))
 (7.1) = ZPr(S.,j+ = sS.,j = s*) Qt(s*)

 S~~~~~~~~~~~~

 and

 Qj+l(s)= ZPr(S.,j+l = s, S.,j = 8* 1 y(i+1))
 S*

 - Pr(S.,j+l = s, S.,j = s*, Y.,J+1 Y(j))
 Pr(Y.,j+l I Y(U))

 oc jPr(S.,j+i = 8, S.,I = s* Y

 = Z (Pr(Y.,j+l S.,j+l = s)

 Pr(S.,j+l = sIS.,j = s*) Pr(S.,j = s* I Y(j)))

 (7.2) = Pr(Y.,j+lIS.,j+l = s) E (Pr(S.,j+l = s1S.,j = s*) Qt(s*))
 S*

 Provided S.j+j takes only a limited number of values s, the probabilities may
 be normalized, giving each function Qt(s), j = 2, .. ., L, in turn, the final one being

 (7-3) QL(S) = QL(s) = Pr(S.,L = s Y)
 the desired distribution of S.,L given Y.

 Now we may proceed backwards to obtain Qj(.) for
 j=L-1, ..., 3, 2, 1:

 Pr(S.,jl = s, S.,j = s* I Y)

 = Pr(S.,j = s* I Y) Pr(S.,j_l =s I S,j= s*,Y)

 = Qj(s*) Pr(S.,j-l = S = 8*, Y(j-l))
 Qj(s*)Pr(S.,j = s* I S.j-= s)Pr(S.,j-l = s I y(-1))

 Pr(S.,j = s* I YU-1))

 (7.4) = Qj(s*) Pr(S.,j =S* I S. j- = S)Qj_1(S)1Q*(S*).
 The second step uses conditional independence of S.,j- and Y.,J,. .,Y.,L given
 S.,j, and the third is an application of Bayes Theorem, using the conditional
 independence of S. j and Y(U-1) given S.,j-1. Note that this backward step
 involves both the forward probability function Q>1 (.) of equation (7.2) and the
 predictive probability Q (-) of equation (7.1). Now the marginal probabilities

 Qj-1(s) = Pr(S.,j-1 = s 8 Y) are readily obtained by summing over s*:

 Qj-l(s) = Pr(S.,j-l = s I Y)

 (7.5) = E Pr(S.,j1 = s, S.,j = s* i Y)
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 7.2. AN EM ALGORITHM FOR MAP ESTIMATION 95

 In the context of time series, equation (7.1) is known as the predictor, and (7.2)
 as the filter, while the backward equations (7.4) is the smoother, incorporating all
 data Y into the imputation of each S.j,.

 Finally, instead of computing the marginal distributions Qj(s), we may prefer
 a realization from the joint distribution Pr(S I Y). The Baum algorithm provides
 this also. The forward computation is exactly as before (equation (7.2)). The
 backward computation is replaced by sampling. First, S.,L is sampled from QL(
 (equation (7.3)). Then, similarly to equation (7.4), given a realization of
 (S.,j =zs* ,S.,J+1, . . , S.,L), a straightforward application of Bayes Theorem gives

 Pr(S.,j 1 = s I S.,j = s, S*j+1 S.,L Y)
 = Pr(S.,j_1 s S.,j = s*1YU-1))

 (7.6) xc Pr(S.,j = S* S.,j_ = s)Q>_1(s)

 where proportionality is with respect to s. Normalizing these probabilities, we can
 realize S.,j -i. This is done for each j = L, L - 1, . .. , 4, 3, 2 in turn, providing an
 overall realization S = (S.,1, ... , S.,L) from Pr(S I Y).

 7.2 An EM algorithm for map estimation

 Suppose, as above we have L marker loci along a chromosome, with recombination
 frequencies Pm,j-1 and Pf,j-1 in male and female meioses, respectively, between
 locus j - 1 and locus j. With data Y and latent variables S consider the complete-
 data log-likelihood

 L

 logPr(S,Y) = log(Pr(S.,1)) + Elog(Pr(S.,J I S.,j-1))
 j=2

 L

 (7.7) + Elog(Pr(Y.,j I S.,j))
 j=1

 (see equation 6.1). Now, in the absence of interference, the recombination
 probabilities Pm,j-1 and pf,j_ enter only into the term log(Pr(S,j I S.,j1)) which
 takes the form

 log(Pr(S.,j I S.,j-)) = Rmj_ log(pmj_1) + (Mm - Rmj-1) log( - Pm,j-1)
 + Rf,j_1 log(pf,jp1) + (Mf - Rf,j1) log(1 - Pf,j-1)

 where Rmj_1 = Ei male |Sij - Si,j_1 is the number of recombinations in interval
 (j - 1, j) in male meioses, and Mm is the total number of male meioses scored in
 the pedigree. The recombination counts Rf,j-1, for j = 2, ... , L, and total meioses
 Mf are similarly defined for the female meioses. Thus computation of the expected
 complete-data log-likelihood requires only computation of

 Rm,j_ = E(Rm,Jy I Y)

 - S E(ISi ,-Si,j-1I)
 i male
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 96 CHAPTER 7. MONTE CARLO ESTIMATES ON PEDIGREES

 and similarly Rf,j-1, which are easily computed from equation (7.4). Since this
 is a simple binomial log-likelihood, the M-step sets the new estimate of Pm,j-1 to

 Rm,j - /Mm, and similarly for all intervals j = 2,3,... , L and for both the male
 and female meioses. The EM algorithm is thus readily implemented to provide
 estimates of recombination frequencies for all intervals and for both sexes.

 An alternative is Monte-Carlo EM. Instead of computing the bivariate

 distributions of (S.,j_i,S.,) (equation (7.4)), N realizations of S, {S(r);-r =
 1,... ,N}, are obtained from the conditional distribution of Pr(S I Y) under the
 current parameter values, as described above (equations (7.3) and (7.6)). These
 are scored exactly as above:

 = -) S -)- g(Tr)I RMj-1 = {t,i STj-1

 i male

 A Monte Carlo estimate of Rm,j_ is ZN$U R(r) -,IN, and the new estimate of
 Pm,j-1 is Rmjj- 1lMm as before, again with analogous formulae for all intervals and
 both sexes. This Monte Carlo EM is readily implemented, and, like many Monte
 Carlo EM procedures, performs as well as the deterministic version. Initially, the
 Monte Carlo sample size N need not be large, although for the final EM steps it
 should be increased. We return to Monte Carlo EM in section 9.3.

 7.3 Importance sampling for likelihoods

 The primary aim in computation of Pr(Y) on a pedigree is normally segregation
 or linkage analysis. For segregation analysis, or for linkage analyses where trait
 loci are explicitly modeled, computations using the Elston-Stewart framework
 is more straightforward, but computations are then limited to few loci, and to
 relatively simple pedigrees. For computations for multiple markers, the Lander-
 Green paradigm is more natural and more effective, but is limited to small pedigrees.
 Despite increasing computational power, the feasibility of exact computations on
 pedigrees remains limited. A pedigree may often be too large for computation of
 the likelihood using the methods of section 6.2, there may be too many linked loci
 for the method of section 6.3, or the pedigree may be too complex for the methods
 of section 6.5. Where exact computation is infeasible, Monte Carlo estimation
 (section 3.7) offers an alternative.

 Given phenotypic data Y on a pedigree, the likelihood for parameters 0
 specifying a genetic model can be written

 (7.8) L(0) = Po(Y) = EPO(Y I X) P9(X)
 x

 where X are latent variables, either the genotypes G or the meiosis indicators S.
 Thus

 (7.9) L(0) = Eo(Po(Y I X)).
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 7.4. RISK PROBABILITIES AND REVERSE PEELING 97

 This is the form given by Ott (1979), and in principle we could estimate L(0) by
 simulating X from the prior genotype distribution under model 0 and averaging the
 value of the penetrance probabilities PO(Y I X) for the realized values of X. This
 does not work well, except on very small pedigrees, since the realized X are almost
 certain to be inconsistent with data Y, or at best to make infinitesimal contribution
 to the likelihood.

 Of course, realizations may be made from any distribution P* (X)
 (equation (3.12)):

 (7.10) L(0) = Ep*j( (X7 Y)) P*(X)

 provided (equation (3.13))

 (7.11) P*(X) > 0 if PF(X, Y) > 0.

 An advantage of this approach is that a single set of realizations from P* (X) will
 provide a Monte Carlo estimate of L(B) over a range of models 0. That is, one set of
 realizations provides an estimate of the likelihood function, not only the likelihood
 at a single point. The first use of Monte Carlo likelihood function estimation in the
 context of pedigree analysis is due to K. Lange in Ott (1979). In this case, P* (X)
 was taken to be PF0 (X). However, this is no more effective than the original form
 (7.9). Again almost all realizations may be incompatible with Y or provide only
 infinitesimal contributions to the likelihood.

 Recall again the brief discussion of importance sampling in section 3.7. In
 addition to the requirement (7.11), one must be able to realize from the distribution
 P* (X), and one must be able to evaluate P*(x) at the realized values x in order
 to compute the estimate. Finally, in order to reduce the Monte Carlo variance
 (section 3.7), P* (X) should be approximately proportional to the summand
 Po (X, Y). In order to meet this requirement note:

 (7.12) Po (X I Y) oc Po (X, Y).

 However, simulation from Po (X I Y) would be useless, even if possible, since we
 must also be able to evaluate it in our Monte Carlo estimate, and to evaluate it
 we need to know the denominator Po (Y), which is what we are trying to estimate.
 One alternative is to realize from a distribution close to P0(X I Y), which can be
 evaluated.

 A disadvantage of the likelihood function estimation approach (7.10) is that the
 range of models for which this estimation is effective is likely to be small, given the
 requirement that the single P*(X) must be approximately proportional to all the
 Po(X, Y).

 7.4 Risk probabilities and reverse peeling

 In analyses of data on a pedigree, under a model indexed by known values of the
 parameters 9, quantities of interest include the conditional genotype probabilities
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 98 CHAPTER 7. MONTE CARLO ESTIMATES ON PEDIGREES

 Po (Gi,.jY) for individuals i. These probabilities are known as risk probabilities,
 since the genotypes of interest are often those conferring a disease risk. In
 sections 6.1 and 7.1 we saw that, for a first-order Markov structure for latent

 variables S.,J, sequential computation of the likelihood Po (Y) using the functions

 Rj(s) = P0(Y,k,k=(j+1), ...,L I S.,j =s)

 had the same computational complexity as computation of conditional probabilities

 Qj(s) = Pr(S.,j = s I Y) using the two functions

 Qt(s) = Pr(S.,j = s I Y.,1,...,Y.,j) and
 QX+1(s) = Pr(S.,j+l =s I Y., j)

 The latter computation requires two passes along the chromosome (forward
 and backward), while the likelihood computation requires only one (forward or
 backward), but in both cases the computation is of order 4mL where m is the
 number of meioses in the pedigree.

 The same applies to latent variables Gj,. on a pedigree structure. If Po (Y) can
 be computed, using the peeling method outlined in section 6.3, so also can the risk

 probabilities Po (Gi,. I Y). This can be done by taking each individual i in turn, as
 the final individual L in a peeling sequence (equation (7.3)). However, it is more

 effectively accomplished by saving, for each possible value g of Gj,., the probabilities
 Ri(g) (equation (6.2)), obtained in peeling up the pedigree. These probabilities are
 then combined with the functions RI (g) (equation (6.3)) obtained by progressing
 back down the pedigree. For example, if individual i divides the pedigree into two
 parts, the set D(i) connected through his spouses and offspring, and the set A(i)
 connected through his parents (including his siblings and their descendants), then
 in proceeding up the pedigree

 Ri(g) PO(YD(i) I Gj, g)

 while in proceeding down, relative to individual i,

 Rj (g) = PO (YA(i), G,. = g)

 so that

 Po (Gi,. = g I Y) cX Po (Yi,. IG,. = g)Ri(g)R* (g)

 and these probabilities may be normalized to give the required probabilities

 P0 (Gi,. I Y). This procedure of working back down the pedigree to obtain risk
 probabilities is sometimes known as reverse peeling. In the case where peeling
 always up the pedigree is computationally feasible, all risk probabilities on a large
 pedigree can be computed in two passes through the pedigree. Even on a complex
 pedigree, with multiple interconnecting loops, few passes through the pedigree are
 required to obtain all the marginal (over individuals i) conditional (on Y) risk
 probabilities (Thompson, 1981).
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 7.5. ELODS AND SIMLINK 99

 7.5 Elods and SIMLINK

 Simulation of data random variables Y is often undertaken as part of a power
 study. For example, simulation of latent genotypes G and resulting marker and
 trait phenotypes Y can be used to assess the power of a potential linkage study.
 Before the times of readily available genome-wide marker data, linkage detection
 was primarily a question analyzing the coinheritance of observed trait phenotypes
 YT and marker locus phenotypes YM, for a single trait locus, T, and single marker
 locus,M. If the two loci are linked, the recombination frequency is p < -, while if
 they are unlinked inheritance is independent at the two loci (p = 2). Thus we have
 the lod score (Morton, 1955);

 (7.13) lod(p) = log (PP(YM YT))

 which is the logarithm of the likelihood ratio comparing the two hypotheses (see
 equation (4.3)). The expected lod score is then

 Elod(p) = EP(10g(PP(YM, YT)) - log(Pp= (YM, YT)))
 (7.14) = Ep (log(Pp (YM, YT)) - log(P(YM)) - log(P(YT)))-

 In advance of a study, one may compute the expected lod score to be obtained,
 given the sizes and counts of pedigree structures available, as was previously done
 in the case of homozygosity mapping (equation (4.8)). As discussed in section 4.4,
 if base-e lod scores are used, Elodp is also the Kullback-Leibler information K(p =
 1;p) for testing p = - when the true value of the recombination frequency is
 p. Thompson et al. (1978) first developed these Elods in the context of linkage
 analysis, and they have become quite widely used (Ott, 1999). In fact, Thompson
 et al. (1978) produced Monte Carlo estimates of the expectation in equation (7.14),
 by simulating the underlying trait and marker genotypes from PP (GM, GT), and
 then the associated phenotypes, and then computing the lod score (7.13) for each
 realized set of phenotypes.

 As data at multiple DNA markers became potentially available, there was a rush
 to map Mendelian traits, using previously collected trait data. The Elod became
 an important tool in assessing whether there were sufficient trait data for probable
 linkage detection if the marker typing were to be undertaken. One problem in using
 the Elod (7.14) is that the expectation is over both trait and marker phenotypes.
 Normally, however, there was already information on the trait phenotypes YT
 that would be available to researchers. Ploughman and Boehnke (1989) addressed
 this case. Given a single-locus trait model, and trait data YT, it is possible to
 simulate the underlying inheritance patterns or genotypes, GT, at the trait locus.
 This is accomplished by a Monte Carlo version of reverse peeling (section 7.4)
 analogous to that given by equation (7.6) in section 7.1. Once trait genotypes GT
 are realized, conditional on the available trait data YT, marker latent genotypes
 GM and potentially observable marker phenotypes YM are readily obtained:
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 100 CHAPTER 7. MONTE CARLO ESTIMATES ON PEDIGREES

 PP(YM, GM, GT I YT) = P(YM I GM)PP(GM I GT)

 (7.15) P(GT I YT)

 The dependence structure here is a special case of that shown in Figure 6.1. The
 combined realizations (YT, YM) may be used to estimate a Elod, conditional upon
 the fixed YT. These conditional Elods became an essential tool in applied studies,
 particularly during the 1980s when many Mendelian traits were mapped, and
 marker typing remained the most expensive component of studies.

 7.6 Sequential imputation

 We turn now to a use of reverse peeling (section 7.4) in the Monte Carlo estimation
 of likelihoods (section 7.3). Recall that efficient Monte Carlo estimation of the

 likelihood L(O) = Po(Y) will result from sampling latent genotypes G from a
 distribution P* (G) close to proportional to the joint probability P0 (G, Y)

 P*(G) ; Po(G I Y) oc Po(G, Y)

 (equation (7.12)). The following approach to choice of P*(G) is due to Kong et al.
 (1994) and Irwin et al. (1994).

 Suppose, as before, there are data at L genetic loci (say a disease and L - 1

 markers) on a chromosome, and assume absence of genetic interference. Let Y.,j
 again denote the data for locus j and G.j, the underlying genotypes at that locus
 for all members of the pedigree. Note that, provided paternal and maternal alleles

 are distinguished, genotypes G.,j satisfy the same first-order Markov dependence
 over loci as do the meiosis indicators S.,j (Figure 6.1). For any specified 00 of
 interest, a realization G* j is obtained for each locus in turn from the distribution

 P*(G.,j) = Po0(G.,j G*(-1),Y(I))
 POO (G.j I G.1, . G,j1 , Y.,1, ... I, Yj , Y.,j)
 - Poo (G.,j G*,j_ l, Y)

 where as in section 6.1, Y( ) = (Y.,1, .. .,Y.,j), G( is analogously defined, and 00
 indexes the genetic model. Predictive weights wj are also computed:

 Wj= PoO (Y.,j I y(i-l),G*(i-l)) = P0o (Y.,j I G.,j-,).
 Due to the conditional independence structure, each of the realizations of G.,j
 and each computation of wj is computationally equivalent to a single-locus peeling
 computation analogous to those of section 7.4.
 Now

 Peo(Gj I *(i-11Y( - Poo(G.,,Y., I G*(i-l),Y(i-l))
 Po0(Y.,j I G*(i-l),y(U-))

 Poo (G.,, Y.,j G*(-1), y(i-1))
 Wj
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 7.6. SEQUENTIAL IMPUTATION 101

 Thus the joint simulation distribution for G* = (G*,..., G*,L) iS

 L Poo (G* IY)
 P* (G*) = ]7 Poo (G.,j I G*(j-l), Y(i)) =

 j=1 wL(G

 where WL(G*) H L1 wj. Thus

 Ep*(WL(G*)) = ZWL(G*)P*(G*)
 G*

 (7.16) E Poo (G*, Y) = PO (Y).
 G*

 A Monte Carlo estimate of L(0o) = Po0 (Y) is given by the mean value of

 WL (G*), over repeated independent repetitions of the sequential imputation
 process. Repeating the process for different trait locus positions on the chromosome,

 one obtains an estimated likelihood curve for the location of the trait locus. That

 is, we have a Monte Carlo estimate of the location lod score curve (section 6.2).

 In genetic analyses, given the data, conditional expectations with respect to some

 particular model P0o (-) are often needed. These address such questions as: In which
 meioses and at what locations are the recombinations? Who should be sampled to

 obtain most additional information about the trait model or trait locus position?

 Where are the biggest uncertainties in underlying marker genotypes? How would
 it affect inferences to reduce such uncertainty? In principle, such expectations can

 be readily estimated, using the sequential imputation probability distribution P*

 and computed weights WL. For any function g* of G and Y,

 Eoo (g* (G, Y) I Y) Z g* (G, Y)Po. (G I Y)
 G

 E g* (G y) P (G)WL (G)
 G POO (Y)
 Ep* (g* (G, Y)WL (G))

 P0 (Y)

 The normalizing factor Poo (Y) is the unknown likelihood. Equation (7.16) provides
 a Monte Carlo estimate of Po, (Y), so that

 (7.17) Eoo(g* (G,Y) I Y) = Ep h(g (G,Y)WL(G))

 In this ratio estimator (7.17), each expectation in numerator and denominator is

 estimated by averaging values of each argument over independent realizations of

 G from the distribution P* (G). The same realizations may be used in estimating

 both the numerator and demoninator. This is often advantageous, since often

 there will then be positive correlation between the two Monte Carlo estimates,
 with consequent reduction in the Monte Carlo variance of the ratio.
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 Chapter 8

 Markov chain Monte Carlo

 on Pedigrees

 8.1 Simulation conditional on data: MCMC

 Equation (7.10) gave the likelihood for a genetic model on a pedigree as an
 expectation over latent variables X, and hence, in principle, provided a method
 for Monte Carlo estimation of the likelihood. We need to estimate

 L(0) Po (Y) = ZP (X, Y).
 x

 As previously, any suitable latent variables may be used, normally either meiosis
 indicators S or genotypes G. For convenience, we use the general notation X for
 the general formulation.

 However, unless the simulation distribution P*(X) is conditioned in some way
 on data Y, equation (7.10) is often useless. Genotypes or gene descent patterns
 simulated from the prior probability distribution given only the model and the
 pedigree structure will rarely even be consistent with the observed data. Importance
 sampling considerations dictate that the sampling distribution should be close to

 proportional to Po (X, Y), or as a function of latent variables X to Po (X I Y)
 (equation (7.12)). Intuitively also, to obtain realizations that have better than
 infinitesimal probability of giving a non-negligible contribution to the likelihood we
 must simulate conditional on the data. However

 (8.1) PO(X I Y) = P (X,Y)
 PO (Y)

 and the normalizing factor Po (Y) is unknown. If we could compute L(0) = P0 (Y),
 Monte Carlo estimation of likelihoods would be unnecessary.

 Enter Markov chain Monte Carlo, or MCMC. We review briefly the Metropolis-
 Hastings class of algorithms (Hastings, 1970) for generating dependent realizations
 from a target probability distribution known only up to a normalizing factor. For

 103
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 104 CHAPTER 8. MARKOV CHAIN MONTE CARLO ON PEDIGREES

 consistency of notation, we denote the target distribution by Po (X I Y). The space
 of possible values of X is denoted X. For each X in X a proposal distribution q(*; X)
 is defined. Then, if the process is now at X the next value is generated as follows:

 1. Generate Xt from the proposal distribution q(-; X)
 2. Compute the Hastings ratio

 (8.2) h(Xt; X) q(X;Xf)Po(Xt I Y)
 q(Xt; X)Po (X I Y)

 Note that h depends only on the ratio of densities PF (o Y), so that any normalizing
 factor need not be computed.

 3. The resampled X* is then determined from the Hastings ratio as follows:

 P*(X* = Xt) a = min(l,h(Xt;X))
 P*(X* = X) (1-a).

 Thus a is the acceptance probability for the proposed Xt.
 Clearly, given the current value of X, the probability distribution of X* is
 determined, independently of the past of the process: a Markov chain on the space
 X of values of X has been defined.

 It remains to show that the desired distribution P0(XIY) is an equilibrium
 distribution of the Markov chain. Hence, if the chain is aperiodic and irreducible,
 P0(XjY) is the unique equilibrium distribution. In this case, the ergodic theorem
 provides that time averages over realizations of the chain converge to expectations
 under the equilibrium distribution. These time-averages may then be used as Monte

 Carlo estimates of these expectations, just as previously in sections 3.7 and 7.6
 simple averages of independent realizations were used.

 The net resampling distribution P* (X*) is compounded from the proposal
 q(Xt; X) and the acceptance or rejection step. Since the process is symmetric
 in X and a proposed Xt, with h(Xt; X) = (h(X; Xt)) 1, without loss of generality
 we can assume h(Xt; X) > 1 or

 q(X;Xt)Po(Xt I Y) > q(Xt;X)Po(X I Y).

 Then a proposed transition from X to Xt is accepted (a = 1) and the probability
 of the move is the proposal probability:

 P* (Xt; X) = q(Xt; X).

 For the reverse move, from Xt, X must be both proposed and accepted. Thus, the
 probability, P* (X; Xt), of the reverse transition is

 q(X;Xt)h(X;Xt) = q(X;Xt) q(Xt; X)Po(X i Y)
 q(X; Xt)PO (Xt Y)

 = q(Xt; X) PO(X Y)
 PO (Xt )

 Combining these two equations, we have

 (8.3) P* (Xt; X)PO (X I Y) = P* (X; Xt)P0 (xt I Y).
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 8.1. SIMULATION CONDITIONAL ON DATA: MCMC 105

 In words, under the defined Markov chain and distribution Po(. Y), the probability
 of being at X and moving to Xt is the same as the probability of being at Xt and
 moving to X. This detailed balance condition holds for all X and Xt, which is a

 sufficient condition for Po(. I Y) to be an equilibrium distribution of the Markov
 chain.

 The algorithm of Metropolis et al. (1953) is a special case; if q(Xt; X) = q(X; Xt)

 the Hastings ratio reduces to the odds ratio of the proposal state Xt versus the
 current state X. An alternative version of MCMC sampling is the Gibbs sampler

 (Geman and Geman, 1984). We consider here the general case in which, at a given
 step, X is partitioned into two sets of components, X = (X,, Xf), the subscripts
 u denoting updated and f denoting fixed. These subsets change at each step, so
 that every component of X is sometimes updated. The sampled X* differs from

 X only in the set of components Xu, and X* is sampled from the distribution
 Po(XUIXf, Y). Suppose X is currently from the desired distribution Po(X I Y),
 so that the marginal distribution of the current Xf is Po (Xf I Y). Thus the
 distribution of the resampled X* is

 P*(X*x7) = P*(X* I Xf)P*(Xf)
 Po (X* jXf, Y)PO (Xf I Y)

 (8.4) - Po(X* I Y).

 Thus the Gibbs sampler also maintains the equilibrium distribution P( I Y).
 The Gibbs sampler is, in fact, a special case of a Metropolis-Hastings sampler.

 Consider a Metropolis-Hastings sampler in which the proposal distribution is the
 resampling distribution of the Gibbs sampler:

 q(Xt; X) = Po(Xt IXf, Y)I(Xt > Xf)

 where I(.) is the indicator function. Then the Hastings ratio is

 h(Xt; X) q(X; Xt)PO (Xt I Y)
 q(Xt;X)Po(X I Y)

 P0(XUIXf,Y)Po(Xt I Y)

 Po(XtiXf,Y)PO(X I Y)
 Po (X I Y) Po(Xf I Y) Po(Xt Y)

 Po(Xf I Y) Po(Xt I Y) Po(X I Y)
 = 1.

 In this case a - h(Xt; X) 1, and no rejection step is necessary. Although, in the
 Gibbs sampler there is no rejection step, X* = X is possible, since Xu is a possible
 value for the resampled X*.

 In order for the time-average over the chain to converge to the expectation under
 the equilibrium distribution, the ergodic theorem must apply. For discrete Markov
 chains, we need irreducibility. However, in practice, too much attention is paid
 to irreducibility. Any chain can be made irreducible, using Metropolis rejection,
 but irreducibility per se is useless. For example, one might decide that once in
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 106 CHAPTER 8. MARKOV CHAIN MONTE CARLO ON PEDIGREES

 a million trials one will propose a new realization from the prior distribution of
 latent variables. Once in a million million realizations one might get something
 compatible with the data. Once in a million, million, million trials one might get
 an accepted realization. Obviously nothing has changed with regard to realizations
 from the chain, but the sampler is irreducible. Metropolis rejected restarts are often

 a good idea -one of several key ideas in getting better samplers, and in assessing
 how good they are. However, it has to be done with the practical goal of more
 efficient Monte Carlo estimation.

 There are two (related) sorts of convergence which often get confused. One is
 convergence of the marginal distribution of each X(T) to the equilibrium distribution
 of the Markov chain as r becomes large. The other relates to the convergence
 of a time-average over the chain to the expectation of the function under the
 equilibrium distribution. Both depend on the mixing properties of the Markov
 chain, and parameters such as the largest non-unit eigenvalue of the transition
 matrix, but the first can (in principle) be addressed by burn-in (discarding enough
 realizations before starting to accumulate the time-average) and is not normally a
 practical problem. The second class of questions remain even if we could start in

 the equilibrium probability distribution. This is a much bigger problem; all parts
 of the space contributing substantially to the target probability distribution must
 be sampled. Although shorter runs in different parts of the space may be helpful in
 diagnosing a problem, Monte Carlo estimation must be done using a time-average
 of a single realization of the Markov chain process. Runs in different parts of the
 space cannot be combined, without knowledge of how to weight the realizations
 from the different starts. (See Geyer (1992) for more discussion.)

 Estimation of the standard deviations of Monte Carlo estimates of expectations
 is essential. Several easily implemented estimators have been proposed, but
 assessment of the estimates is hard, in practice. Again, Geyer (1992) is a good
 reference. One of the simplest methods of estimating Monte Carlo variances is by
 using batch means (Hastings, 1970). One divides the realizations into sufficiently
 large batches so that the batch means are "almost independent", and relates the
 variance of independent batch means to the variance of the overall mean (the
 estimator of the expectation). The variance of independent batch means can
 be estimated from the empirical variance as in section 3.7. One can test for
 autocorrelation between the batch means. This is quite effective if the sampler
 is doing well, but can severely underestimate variance if the sampler is not getting
 around the space. However, other variance estimators have the same deficiency,
 and the empirical variance of the batch means is easily computed.

 Variance estimation also relates to the choice of spacing in sampling realizations
 from an MCMC. The optimal spacing is the one that achieves minimum
 computational cost for given precision of the resulting estimator. This optimal
 spacing depends on the relative costs of generating the samples and of evaluating
 the contribution to the estimator at the realized values, but is seldom large
 (Geyer, 1992).

 This section has aimed only to outline the main principles and issues in MCMC.
 For those who wish to pursue the topic, Gilks et al. (1996) is a good starting point,
 while there is already a large more recent literature.
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 8.2. SINGLE-SITE UPDATING METHODS 107

 8.2 Single-site updating methods

 As in other areas of application, the earliest MCMC samplers that were used
 to realize latent variables on pedigrees conditional on phenotypic data were
 mainly single-site updating methods. The proposed changes to the latent variable

 configurations were thus very small. Lange and Matthysse (1989) used as their
 latent variables both the genotypes and inheritance patterns of genes, and used

 a Metropolis algorithm to propose changes. Sheehan (1990) and Thompson and

 Guo (1991) used a Gibbs sampling approach, using the genotypes as the latent
 variables, while Thompson (1994a; 1994b) used a Metropolis algorithm to update

 a single meiosis indicator Sij for meiosis i and locus j.
 Unfortunately, in genetic examples the constraints on genotypes G or meiosis

 indicators S imposed by Mendelian segregation and discrete marker phenotypes

 mean that any proposal that makes multiple changes to the current value of G or
 S has a high probability of proposing a configuration inconsistent with the data

 Y. By contrast, although proposed changes are small, single-site updates are easily
 proposed and often accepted. The genes and heritable effects in an individual are

 determined by those in his parents, and jointly with those in his spouse, influence
 those in his offspring (Figure 1.3(a)). This neighborhood structure means that
 a single-site Gibbs sampler is easy to implement. Each genetic effect in each
 individual is successively updated, conditional upon the remainder.

 Specifically, where genotypes G are the latent variables, underlying genotypes
 for both trait and marker loci are sampled individual by individual and locus by

 locus. For a single-site update to component Gij, the genotype of individual i at
 locus j, the proposal distribution for the Gibbs sampler (equation (8.4)) is

 qiji(G*; G) = Po(G* j I G (ij), Y) for component (i, j)
 (8.5) G* = Gk,I for (k,I) + (i, j), or G*(ii) = G -(ij).

 As for S in section 4.7, we use the standard notation G_(i,) for the set of all
 components of G other than Gi,j. This full conditional distribution for Gij is easily
 computed, but only small changes to G are possible at each step. On the other

 hand, the full conditionals for larger blocks of components GT {Gi,j; (i, j) E T}
 are more computationally intensive or even infeasible.

 For certain data configurations, the single-site genotypic Gibbs sampler is not

 irreducible when a locus is multiallelic. However, theoretical irreducibility can
 always be easily achieved. The practical problem is failure of the sampler to
 mix adequately. This can be a problem on large pedigrees even for diallelic loci,

 particularly if underlying genotypes are highly constrained (but not determined)
 by the data. The reducibility of the Gibbs sampler for genetic loci with more than
 two alleles was first addressed by Sheehan and Thomas (1993), in the context of
 a single-genotype Gibbs sampler. Their method used modification of either the
 segregation probabilities or the penetrance probabilities, so that the sampler was
 no longer irreducible. For example, modifying the penetrances

 P*(Yi,j Gij) = Po(Yi,j Gij) if Po(Yi,j I Gij) > 0
 (8.6) P* (Yi,j Gi,j) = c if Po (Yij, I Gij) = 0.
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 Then

 Po (G. Y) = 1 if Po(Y I G) > 0

 = OifPo(YIG)=0.

 Thus no reweighting is required in order for the realizations to represent the

 distribution of genotypes under the true genetic model. All realizations consistent

 with the true model have equal weight; those inconsistent with it are just dropped

 from the output sample. Lin et al. (1993) used similar penetrance modifications

 to achieve irreducibility, but used Metropolis-coupled samplers (Geyer, 1991a),

 coupling a sampler under the true model to samplers which were not only

 irreducible, but also moved more quickly around the space. Rather than a

 uniform penetrance modification for all individuals, only individual-specific changes
 necessary to achieve irreducibility are made. The expansion of the space that is

 sampled is therefore limited.

 Several methods for more efficient sampling of the space of feasible underlying
 genotype configurations have been developed. Some of these are due to Shili Lin

 (Lin et al., 1993; Lin et al., 1994). Others are due to Eric Sobel (Sobel and
 Lange, 1993) and to Charles Geyer (Geyer and Thompson, 1995). We briefly

 outline here only the methods of Lin et al. (1993; 1994), directed specifically towards

 sampling of genotypes at polymorphic marker loci where there are many unsampled

 individuals in the pedigree. These methods use a form of "heated proposals",

 resulting in samplers that move around the space of genotypic configurations far

 more effectively.

 One possibility is to base a Metropolis-Hastings sampler on the local conditional

 distribution for the single component Gi,j (equation (8.5)), but in a way that
 enhances movement around the space. The method of Lin et al. (1994) "flattens"

 the proposal distribution in a manner similar to simulated annealing, using a

 "temperature" parameter T:

 qi,j(G*;G) cX (Po(G*j I G_(ij), Y))l/T for component (i,j)
 G*kl = Gk,l for (k, l) (i, j), or G* (ii) = G (ij).

 The Hastings ratio is then

 h(G*;G) = q(G;G*)Po(G* I Y)
 q(G*; G)Po (G I Y)
 (Po (Gij G* (i ),Y))l/TPo(G* I Y)

 (Po(Gi* j G_(i,),y))l/Tp0(G I Y)

 (Po(G I Y))l/TP0(G* Y)(Po(G_(ij) y))1/T
 (Po (G* Y))1/TPo(G Y)(PO(G* (i j) y))l/T

 (Po(G y))1-1/T
 (Po(G y))1-1/T

 (Po (Gt*j G_(i j)) y))1-1/T
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 using, in several steps, the fact that G_(,j) = G* (ij), The Hastings ratio is thus
 as easily computed as the local conditionals Po (Gij I G_ ij, Y). An interesting
 feature of this system is that, with T > 1, the probability of change in G is reduced
 from that for the Gibbs sampler, where T = 1 (C. Jennison, pers. comm. 1992).
 However, because this increases the probability that the sampler remains in low-
 probability states, it increases the overall probability of a succession of changes that
 moves G to a different part of the space. The probabilities of single-step changes
 are not necessarily indicative of overall performance of the sampler, particularly in
 high-dimensional spaces.

 Under the assumption that S.,j are first-order Markov over loci j (section 4.7),
 the single-site meiosis indicator sampler is also easily implemented (Thompson,
 1994a). Since Sij is binary, a Metropolis algorithm is natural. A meiosis i and
 locus j are selected at random, and a change from Sij = s to Sij = (1 - s) is
 proposed. This proposal changes only the recombinant/non-recombinant status in
 the two intervals adjoining locus j, and the conditional probability of marker data
 at locus j:

 h(S*; S) PO(Y I S*)PO(S*)
 Po (Y I S)PO (S)

 Po ("'j I S:j)Po(Sij I Si,j-1,Si,j+1)

 Ps(Y.nj I S.,J)PO(Sij ISj-1Si,j+ )

 (8.7) Po (Y.,j SS J) (Pj-i )Pj

 for j = 1,...,L (see equation 4.12). Here Pj-1 Pr(Si,j_1 Si,) is the
 recombination frequency between locus j - 1 and locus j, and Tjpl = (ISi,jpi -
 si - Si,j_1 - 1 + sl) is the indicator of whether the proposal places (Tj-l = +1)
 or removes (Tjfl = -1) a recombination between locus j - 1 and j. The values
 pj and Tj are analogously defined for the interval j to j + 1, and po = PL =
 The first term in the Hastings ratio h(S*; S) is given by equation (3.10) and is
 easily computed by the methods outlined in that section, provided there are not
 too many data S.,j on the pedigree. Generally, the space of latent variables is
 smaller for S than for G, and hence MCMC is more effective. The sampler may
 not be irreducible (Sobel and Lange, 1996), but there are many fewer constraints
 than with a genotypic sampler and irreducibility is often provable on a locus-by-
 locus basis (Thompson, 1994a; Thompson and Heath, 1999). Note that, provided
 recombination frequencies between adjacent loci are strictly positive, irreducibility
 is a single-locus issue.

 8.3 Combining exact computation and Monte
 Carlo

 A major difficulty with MCMC methods is to ensure proper mixing of the samplers,
 and hence efficient Monte Carlo estimation. On large pedigrees, with models
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 loci
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 FIGURE 8.1. The conditional independence structure for MCMC sampling

 or data involving multiple linked loci, single-variable MCMC updating methods
 are not effective. Some approaches to improving Monte Carlo estimates involve
 some combination of exact and Monte Carlo computation. One straightforward
 idea is simply to compute exactly on those parts of the pedigree on which
 this is possible (Thompson, 1991). The results from peeling peripheral parts
 of the pedigree enter as potentials on nodes of the remaining core (Geyer and
 Thompson, 1995), and the space over which MCMC sampling is required is
 reduced. Rao-Blackwellized estimators for mixed-model likelihoods (section 9.3)
 also combine exact computation with MCMC sampling. However, the sampling
 used for these estimators by Thompson and Guo (1991) was single-site updating.
 Major improvements can be gained only by improved MCMC samplers.

 Recently a variety of joint-updating schemes have been developed. For example,
 Jensen et al. (1995) update genotypes of blocks of individuals jointly at several loci.
 Jensen and Kong (1999) update arbitrary collections of the latent variables in the
 pedigree, selected using the HUGIN Bayesian expert system software (Andersen
 et al., 1989). Heath (1997) and Thompson and Heath (1999) use the meiosis

 indicators S = {S,}. Heath (1997) updates jointly the components of Sj,
 the indicators at a single locus j: the L-sampler. Thompson and Heath (1999)
 update jointly the components of Si,., the meiosis indicators for all loci in a single
 meiosis i: the M-sampler. All these MCMC methods provide, directly or indirectly,
 realizations of the descent of genes in pedigrees and the genotypes of individuals,
 and hence Monte Carlo estimates of likelihoods for linkage and segregation analysis
 (sections 6.2, 6.3 and 7.6), and the probabilities of gene identity by descent and
 haplotype sharing conditional on observed trait and marker data Y (section 3.6).

This content downloaded from 
������������128.95.104.109 on Sat, 19 Sep 2020 13:28:15 UTC������������� 

All use subject to https://about.jstor.org/terms



 8.4. TIGHTLY-LINKED LOCI: THE M-SAMPLER 111

 In a Bayesian framework, the segregation and linkage parameters of genetic models

 are assigned prior probability distributions (see section 2.4). In this case, the
 same MCMC methods provide estimates of the posterior probability distributions
 of linkage and trait gene effects and locations.

 In the locus-by-locus sampler (L-sampler) first developed by Kong (1991), all

 genotypes G.,j = {Gi,j } at a single locus j are updated conditionally upon those
 at neighboring loci. Computationally the approach is analogous to the sequential
 imputation method of section 7.5, except that sampling is from the full conditional

 of G.,j. Heath (1997) has further developed the L-sampler, and widened its
 scope, using S.,j rather than G.,j. Because of the structure, this full conditional
 distribution of S.,j given the data Y and the meiosis indicators S_j = {S.,l, I 4 j}
 is

 P9(S.,3 I S_,Y) = P0(S.,J I SIJ_1SJ+1IYj)

 That is, the distribution depends only on current values of S.,j_1 and S.,j+l
 and data Y.,j. Thus, the calculation of Po(S.,j S_j, Y) is a single-locus
 peeling computation analogous to those of section 6.3, and is often feasible.
 The developments of Heath (1997) are in the context of Bayesian analyses of
 quantitative traits, under models of several loci contributing additively to the trait
 value. His approach uses a variety of improved sampling and computational ideas,
 including more efficient peeling algorithms, integrated proposal distributions (Besag
 et al., 1995) and reversible jump MCMC (Green, 1995). The output consists of
 realizations of putative trait loci from a Bayesian posterior; no likelihood or lod

 score is obtained. One great advantage of the L-sampler is that it is irreducible,
 provided only that recombination probabilities between adjacent loci are strictly
 positive. Moreover, this MCMC sampling is a great improvement over single-site

 methods. However, when there are multiple tightly linked marker loci, mixing can
 be poor.

 8.4 Tightly-linked loci: the M-sampler

 The single-site (Si,j) or single-locus (S.,j) update has mixing problems when loci are
 tightly linked. An alternative form of block-updating is to update jointly the meiosis
 indicators for all loci in a given meiosis (Si,.). The M-sampler is a whole-meiosis
 Gibbs sampler (Thompson and Heath, 1999) for Si,. At each step a random meiosis
 is selected for updating; alternatives in which meioses are updated sequentially are

 also possible. Note also that, for an unobserved founder with only one offspring in
 the pedigree, the meiosis from the founder parent to the offspring can be ignored

 (and not sampled), since there is no information on the haplotypes transmitted.
 To implement the M-sampler we must compute

 Pr(Si,. I {Sk,.Ik54i}IY).

 As previously (section 6.2), we suppose that the marker data Y can be partitioned
 into data relating to each locus j = 1, 2, ..., L, and that the loci are numbered in
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 112 CHAPTER 8. MARKOV CHAIN MONTE CARLO ON PEDIGREES

 order along the chromosome. Then

 Y - (Y., 1 ,Y.,L)

 As in section 6.2, let

 y = (Y. ,...,Y.j), so y = y(L)

 We have seen in section 3.6 that Pr(Y.,j I S.,j) can be easily computed.
 Now define

 Qj (s) = Pr(Sij = S {Sk,.,k 4 il} Y(i))

 for s = 0, 1. Note that this function Qj(-) is analogous, but not identical, to

 the function Qt () of section 7.1. There the probability considered was the joint

 distribution for all components of S.,j, conditional on Y(W); here the probability
 is for Si, conditioning additionally on indicators at other meioses {Sk,., k : i}.
 Meiosis indicators Si,. are a priori independent over i, and become dependent only

 through conditioning on the data Y (Figure 8.1). Thus, Q (s) is the probability for

 the meiosis indicator S,j, given the data Y(i) and other (k 4 i) meiosis indicators
 at loci up to and including locus j. (The components Sk,l for 1 > j are irrelevant,

 since Y.,, is not conditioned upon.) Thus, by analogy with section 7.1, Qt(s) may
 be computed sequentially just as in equation (7.2). The only difference is that now,

 rather than considering all 2' possible values of S.,j, we consider only values of the
 single binary indicator Sij, conditioning on the remainder (k 78 i) which remain
 fixed. In meiosis i, there is no recombination between locus (j - 1) and locus j if the
 value (s 0 O, 1) of Sij is the same as at locus (j - 1), and there is recombination
 if the values differ. That is

 Qt(s) oc Pr(Y.,1 | S.,1)
 and

 Qt (s) oc Pr(Y.,j I S.,J) (QWl (s)(1 - pj-1)

 (8.8) + Qt_1(l-s)fj_1)

 for j = 2, ..., L. In this equation, S.,j takes the current value at meioses k other
 than i, and the value s for meiosis i. As before, pj-l is the recombination frequency
 between locus j - 1 and locus j. Thus we may compute (8.8) for each j in turn,
 working forwards sequentially along the chromosome.

 Finally we have computed

 Qt (s) = Pr(Si,L =S | {Sk,., k 5 i}, Y y(L))
 and thus Si,L may be sampled from this desired conditional distribution. Suppose
 now each Si,l has been successively sampled from the required distribution for
 l = L,L-1,...,j + 1,j. Then

 Pr(Si7j-1 = s I{Sk,., k 5 i}, {S,1l, 1 = j, ... , L}, Y)

 (8.9) oxQj(s) (Tj pj-1 + (1-Tj)(1-pPj-1))
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 8.4. TIGHTLY-LINKED LOCI: THE M-SAMPLER 113

 where Tj = ISij - sI is the indicator of recombination in the interval j - 1 to j.
 Thus we may work backwards along the chromosome, sampling each Sij in turn
 (j = L, ..., 1), obtaining overall a joint realization of Sij, j = 1, ..., L from its full
 conditional distribution given {Sk,., k + i} and Y. Again, this is directly analogous
 to equation (7.6) of section 7.1.

 Throughout this chapter we have ignored the fact that genetic maps differ

 between males and females: the order of loci is the same, but the recombination

 frequencies can differ quite widely. Linkage analysis computations should
 accommodate different values of recombination frequencies for males and females.

 For the M-sampler this is particularly straightforward, since each meiosis is in a

 male or in a female. As will be shown in section 11.2, the M-sampler can also
 incorporate more general meiosis models, including genetic interference, by using a

 Metropolis-Hastings acceptance/rejection step (Thompson, 2000a).

 Implementations of almost all the computational algorithms referred to in this

 chapter are freely available by ftp. The Rockefeller Genetic Linkage Software list at
 http://linkage.rockefeller.edu/soft/list.html is an excellent reference. The software
 of our group is implemented primarily in our MORGAN package, which is available
 by ftp at . The most recent release of MORGAN (MORGANiVF1, shortly to be
 replaced by MORGANNV2.3) includes L-sampler and M-sampler implementations.
 The site www.stat.washington.edu/thompson/Genepi/pangaea.shtml also includes
 the Loki package for MCMC linkage analysis of quantitative traits (Heath, 1997).
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 Chapter 9

 Likelihood Ratios for

 Genetic Analysis

 9.1 Monte Carlo likelihood ratio estimation

 The MCMC methods of Chapter 8 provide methods for obtaining realizations from

 Po(X I Y), the probability distribution of latent variables X conditional on data
 Y under a model indexed by parameters 0. In this chapter, we discuss methods of
 using such realizations in Monte Carlo methods for linkage and segregation analysis,

 focusing on likelihood methods.

 Recall again (equation (7.8)) that, for phenotypic data Y,

 L(0) = Po(Y) = ZPo(X, Y),
 x

 where latent variables X are genotypes G or meiosis indicators S. We again use

 0 to denote the general set of parameters of a genetic model. These include the
 recombination or gene location parameters. From equation (7.12), efficient Monte

 Carlo estimation of L(0) will result from sampling from a distribution P* (X) close

 to proportional to the joint probability Po (X, Y):

 P*(X) Po(X I Y) c Po(X,Y).

 One possible choice is thus to simulate, by the methods of Chapter 8, not from

 Po(X I Y) but from Poo(X I Y), where Oo 0. Then

 PO (Y) PO (X, Y) = (PxIY) POO (X I Y)
 = tpP O ( XI I

 Eo (p0(X| Y) = P0o(Y) E0o Po (XI Y) iy/
 Hence in genetic analysis, or in any missing-data context, we have the key formula

 115
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 116 CHAPTER 9. LIKELIHOOD RATIOS FOR GENETIC ANALYSIS

 of Thompson and Guo (1991)

 (9.1) L(O) PO(Y) E(PO (X Y)
 L(90) POO (Y) 9~ Poo (X, Y)

 In this expectation, X is the random variable, Y is fixed. The distribution of X

 is PoO(I1Y). If X(T), r = 1,... ,N, are realized from this distribution then the
 likelihood ratio can be estimated by

 1 N ( PO(X(T), Y)
 N POO t PP0(X(T), Y)J

 In section 8.1 we saw how MCMC can be used to realize X from Poo ( Y).
 Simulation at a single model 00 provides an estimate of the relative likelihood

 L(9)/L(9O) as a function of 0. This will be a satisfactory estimator only for
 those 0 close to 00; specifically, for those 0 for which PO (XIY) is close to
 proportional to Po0 (X, Y). Sometimes, primary interest is in the shape of the
 likelihood surface in the neighborhood of some specific point, such as the maximum
 likelihood estimate (MLE). In this case, preliminary MCMC runs and likelihood
 ratio function estimates can be used to obtain a ballpark value of the MLE (Geyer
 and Thompson, 1992). Alternatively, Monte Carlo EM can be used (see section 9.3).
 Once a ballpark estimate of the parameter values is found, one very large MCMC
 run can provide an accurate estimate of the MLE and of the likelihood in the region.
 However, this approach has limitations. One may be interested in the likelihood

 surface, or in log-likelihood differences, over large regions in the parameter space.
 Or, the large MCMC run may reveal that one's initial estimate was not sufficiently
 close to the MLE, and additional large runs may be necessary. It is desirable to find
 a method that combines realizations from all the runs, and provides an estimate of
 the likelihood surface over a range of parameter values.

 9.2 Monte Carlo relative likelihood surfaces

 One way of combining realizations from different MCMC samplers was provided
 by Geyer (1991b). MCMC samplers are run at many models, covering the range

 of interest, say at 90, 91,. , IK. The sets of Nj realizations from Po (XIY), j -
 0,1, ... , K, give a combined set of realizations from

 P*(X) = E N E NjPo (XIY)

 1 K

 Z E N ENjPoj(X,Y)/L(Oj)

 and writing the likelihood estimation formula as an expectation with respect to this
 P*

 L (j =E p* (Po (X, Y) L(03) = P* (X) 2
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 9.2. MONTE CARLO RELATIVE LIKELIHOOD SURFACES 117

 Now, although we have a sample from P*, the denominator P*(X) cannot be
 explicitly computed, since it depends on the unknown L(Oj), but we have the
 implicit Monte Carlo estimating equations

 L(93) = E (IO Z[=0 N1P0o (X*, Y)/L(901)

 (9.2) N ( PO (X',Y) _ )

 for j = 0, ..., K, where the sum is over the total set of realizations X*. These

 equations determine only the relative values of L(9j), but can be solved iteratively
 for these relative values. For example, one may iterate equation (9.2) directly,
 renormalizing after each cycle, to keep one value, say L(9o) fixed (=1). This
 iterative procedure is globally convergent to the unique solution of equation (9.2).
 Once the relative values of L(9j) are found, then, for any other value of 0 in the
 range spanned by the set of Oj, L(0) can be estimated by

 (9w3) L(0) = N E - x*Y L(1) )

 where the sum is over the same total set of realizations as before. (Again, the
 estimate is relative to L(9o) = 1.) Geyer (1991b) named this method reverse logistic
 regression.

 There are two requirements for this approach to be an effective solution to

 the likelihood estimation problem. First, each sampler P9, (XIY), j = 0,..., K
 must cover well that part of the space of X-values that has high total probability
 mass under that probability distribution for an MCMC sampler on a large and
 structured space of latent variables, this is a non-trivial consideration (section 8.1).
 Second, even if the separate samplers are behaving "well", in this sense, for the
 mixture estimates to be effective we need good "overlap" between adjacent models.
 The conditional probability that a particular observation X derives from the sample
 Poj is

 Nj Po (XIY)

 El ? N1Po, (XIY)

 For every j, the values of these probabilities should not be too close to 1 for too

 large a proportion of the sampled X-values. Thus adjacent parameter values 9j
 must be chosen not too far apart, where the relevant measure of distance is in

 terms of the probability distributions Po, (XIY) of the X-values generated.
 Other difficulties with using the reverse logistic regression method concern

 computational resources. Either the realized X*, or at least the values Po (X*, Y)
 for each 0 of interest, must be saved, in order for equations (9.2) and (9.3) to
 be implemented. This can demand massive amounts of storage. An alternative
 is to use block averages of the ratios of Po0 (X,Y)/P01(X,Y) in equation (9.2)
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 118 CHAPTER 9. LIKELIHOOD RATIOS FOR GENETIC ANALYSIS

 (Thompson, 1994b). In the extreme case, this block might be the average over a

 full run of the sampler at a given Oj. Let

 Rj(0,IOj) = N-. E PO, (X*(), Y)

 be the likelihood ratio estimate of L(09)/L(0j) from Nj realizations X*(i) at Oj. Here
 the chosen values of 1 may vary with j. We define Rj(01,,j) to be 0 if L(09)/L(0j)
 is not estimated from realizations under model Oj. At a minimum, for each j,
 values for Rj (09, 9j) should be computed for the values 9, adjacent to Oj. Then the
 estimating equation (9.2) becomes

 (9.4) L( A) = (Rji(0li0j)L(0))

 Writing vj = 1/L(0j), Rjl = Rj(01,0j), v = (vj), and R = (Rjl), equation (9.4)
 becomes

 V= Rv.

 That is, the vector of vj-values is a right eigenvector of the matrix R.
 Asymptotically, for large Monte Carlo runs, each computed Rjl-value converges
 to L(09)/L(0j) = vj/vl. Thus, if, for each j, Rjl is evaluated for t other 9, values,
 then each evaluated Rjlvl is approximately vj, and the corresponding eigenvalue
 should be t. This provides one check on the performance of the method, although
 in practice it is a weak criterion. The eigenvalue can be close to t even when
 performance is poor.

 There are many open questions in the statistical properties of estimators such

 as those resulting from equation (9.4). If sufficient realizations can be stored, then
 equation (9.2) may provide the more satisfactory estimate. Suppose, however, only

 one in 1000 samples X* or resulting probabilities Po, (X*, Y) can be stored. Then
 should one use the estimate (9.2), or one that uses the block averages over each
 block of 1000 steps? The latter would require more computation (evaluations of
 POF(X*, Y)), but the same amount of store. The Monte-Carlo variance of the

 block-average will be less than that of individual values PFJ (X*, Y), but possibly
 not by much if the autocorrelation in the Markov chain is very high. Clearly these
 questions are related also to issues of computational efficiency in sub-sampling and
 spacing in the MCMC (Geyer, 1992), discussed briefly in section 8.1.

 9.3 Monte Carlo EM for the mixed model

 For some models, exact computation of the conditional expectations required to

 implement an EM algorithm may be impractical or infeasible, particularly if the
 model is complex, or there are missing data. Penetrance parameters may not be

 simple functions of genotypic counts. Even the bivariate case of the simple polygenic
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 9.3. MONTE CARLO EM FOR THE MIXED MODEL 119

 model (section 2.6) may be complicated, if some individuals are observed for just
 one of the two traits (Thompson and Shaw, 1992). Chiasmata patterns are not
 so readily imputed if the recombination patterns of some gametes are not fully
 observable (section 5.3), due to missing typings or parental homozygosity at some
 loci. However, if latent genotypes or meiosis indicators and missing phenotypes
 can be realized from their conditional distributions given the observed data Y = y
 under current values of the parameters, a Monte Carlo EM (MCEM) is easily
 implemented.

 In section 2.6, the simple polygenic model was introduced, and the EM-algorithm
 for the variance component parameters a2 and o2 was outlined. In section 6.6,
 the univariate trait model was generalized to the mixed model, including both
 Mendelian genotypes and Gaussian polygenic effects (see equation (6.5)). The
 parameters then include also the frequency of the alleles at the diallelic Mendelian

 trait locus, and the vector of genotypic means t, = (pi(g)) for the genotypes g at
 the locus. As before, we index the members of the pedigree by i, i = 1,...,ntOt.
 Suppose that the nobs observed members of the pedigree are those indexed by i C 'D.
 Then, for i in D, we have equation (6.5):

 Yi = p(Gi) + Zi + Ei.

 The vector Z = (Zi) is defined over all nt,t members of the pedigree, and has the
 multivariate Gaussian distribution Z - N(O, a 2A), where A is a matrix determined
 by the pedigree structure (section 2.6).

 If If E} is the indicator function of the event E, the complete-data sufficient
 statistics of this exponential family model for (G, Z, Y) are:

 the number of observed individuals of each genotype g, or EiED I{Gi = g}
 the total trait effect in those individuals, EiED(Yi - Zi)I{Gi = g}
 the quadratic residual term, for observed individuals,

 fi = (Y - u(G) - Z)'(Y - ,u(G) - Z), and
 the total genetic variance over all pedigree members, Z'A-1Z.
 If genotypes GC and polygenic values Zi were observable, then the MLEs of the

 parameters would be straightforward. For each discrete genotype g

 )_Eic-(Yi -Zi)I{Gi = g}
 EiED I{Gi = g}

 For the variance component parameters (see equation (2.17))

 a2 = (Y - 1(G) - Z)'(Y - p(G) - Z)/nobs
 ,a2 = (Z'A-1Z)/ntot

 where p(G) denotes the vector of genotypic values of observed individuals
 (1i(Gi); i E D). However, for this mixed model, both exact implementation of
 an EM algorithm and exact evaluation of the likelihood are infeasible. Monte Carlo
 methods can, however, be implemented.

 For example, the conditional expectations of the statistics in the above equations,
 given the data Y, may be estimated by averaging the values given by N realizations
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 120 CHAPTER 9. LIKELIHOOD RATIOS FOR GENETIC ANALYSIS

 (z(T), G(T)). At current parameter values, (01,2 a, a t), realizations are obtained

 from the conditional distribution P2,,2 ,p(Z, G I Y), leading to Monte Carlo EM
 update equations

 N .(g) = (N) -1 N i{c_Y G - Z(r )If Ggr)
 Z1T= Zj =g
 N

 (9.5) a.2* = (Nnobs)1 '3(Y - p(G(Tr)) -Z(-T))I/(Y - bL(G (T)) -Z r)

 (9.6) a = (Nntot)> Z Z(r)AlZ(T)

 Equations (9.5) and (9.6) should be compared with the exact EM equations for the
 parameters of a polygenic model (equation (2.17)). With a Monte Carlo approach,
 the conditional variance of Z given Y and G need not be computed, since the
 variance is subsumed into the realized variability of the quadratic expressions. Note,
 however, that this variance is an intrinsic part of the iterative procedure. Just as

 in section 2.6, it is insufficient to use only the estimate a = N-1 E=1 z(r) Of the
 conditional mean a= E02,?(Z |2G,Y).

 Returning to single-locus models, if genotypes G can be realized given the data
 Y and current parameter values, MCEM equations for parameters of penetrance
 densities are straightforward. The use of MCEM also permits extension to more
 complex models. One example is that of a more general mixed model for a
 quantitative trait, including also the effects of observed covariates and other

 variance component effects, such as those due to shared environment. This model
 assumes the trait value yi is the sum of these effects together with the effect of a
 single-locus genotype Gi, a polygenic value zi, and a residual with mean 0 and

 variance ue. Provided genotypes and polygenic values (G,Z) can be realized,
 conditional upon data Y and current parameter values, MCEM is again feasible.
 Achieving these realizations is not, in general, straightforward. We can do so by
 using Markov chain Monte Carlo (MCMC). Guo and Thompson (1992; 1994) have
 used MCEM for the mixed model and for joint linkage and segregation analysis.
 Generally, MCEM is as effective as EM at getting a ball-park estimate, and is
 remarkably robust even when quite small Monte Carlo samples are used. However,
 it is of little use in obtaining a precise final MLE-a large number of very large
 samples would be required.

 9.4 Likelihood estimators for complex models

 The mixed model also provides an example of Rao-Blackwellization (section 3.8) of
 Monte Carlo estimates of likelihood ratios. Applying the formula (9.1) directly to
 the mixed model with latent variables (G, Z), we have

 L(O) _ Pa(Y) (E00 Po(G,Z,Y) |y
 L(0o) POO (Y) 00 Poo (G, Z, Y) J
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 9.4. LIKELIHOOD ESTIMATORS FOR COMPLEX MODELS 121

 However, considering only the latent variables G, it is also the case that

 (9.7) L(O) - PO(Y) -Eo( Po(YjG)Po(G)
 L(Qo) P0o (Y) 0 kPoo (YG)Po (G)

 while considering only latent variables Z

 (9.8) L(O) - Po(Y) - E ( PO(YIZ)PO(Z) y
 L(0o) P0o(Y) ? VPoo(YwZ)P0o(Z)

 Since Y and Z are continuous random variables, we have now probability density
 functions rather than probability mass functions. However, we retain the notation
 Po(.), to avoid introducing additional notation for this one example.

 As shown in section 6.6, either integration over Z or summation over G is possible
 in the mixed-model likelihood (equation (6.6)), providing for exact computation of
 the probabilities

 (9.9) Po (YIG) = j Pr(Ylz, G)P,2 (z)dz
 z~~~~~~

 in equation (9.7), or of the probabilities

 PO(YIZ) E PZo(YlZ?G)Po(G)
 G

 in equation (9.8). Equations (9.7) and (9.8) provide two alternative Rao-
 Blackwellized estimators. To implement the estimate based on (9.7) or on (9.8),
 only the realizations of G or of Z would be used. However, if using a Markov
 chain Monte Carlo (MCMC) sampler (Chapter 8), it will normally be necessary
 to generate both. For example, from N Monte Carlo realizations (G(T),Z(T))
 generated from Poo (G, ZIY), the estimate based on equation (9.7) would be

 (9.10) ~L(0) _ 1 E p(Y|G(T)) Po(G(T))
 (9.10) _ : N

 L(0o) N T=1 Po0o (YIG(r) )Poo (G(T))

 The hope is that the reduction in Monte Carlo variance due to the partial exact
 computation (9.9) will compensate for this increased computation (see section 3.8).

 Note also that, for some model comparisons, additional exact integration or
 summation over latent variables Z or G may be unnecessary. If under models
 indexed by 0 and by 00,

 Po(YIG) = P0o(YIG)

 these probabilities need not be computed, and the estimate (9.10) reduces to a ratio
 of the prior genotype probabilities Po (G)/P9o(G) averaged over the realized G(r).
 Similarly, if

 P0(YjZ) = P0o(YIZ)
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 the estimator based on equation (9.8) reduces to the ratio of population densities
 of Z. By careful choice of models to be compared, procedures can be made more
 computationally efficient.

 Reduction in Monte Carlo variance by Rao-Blackwellization is guaranteed only
 for independent realizations (G(T), Z(T)) of the latent variables (Geyer, 1992).
 For dependent realizations, Geyer (pers.comm.) has provided a simple counter-
 example based on latent variables consisting the odd and even terms of a first order
 Gaussian autoregressive process. However, in many practical instances the Rao-
 Blackwellization procedure works well, even when MCMC realizations are used.
 Estimators based on (9.7) and (9.8) were introduced by Thompson and Guo (1991)
 and compared by Thompson (1994c) in likelihood analyses of genetic models with
 several latent heritable components. It was found that the estimator (9.10) works
 very well, leading to substantial gains in computational efficiency, whereas the
 estimator based on (9.8) is very inefficient. The summation over G required for the
 latter is generally computationally more intensive than integration over Z. More
 importantly, the data Y and variables Z together constrain G very much more
 than Y and G constrain Z. Since the conditional variance of Z given Y and G is
 relatively high, exact integration over Z reduces Monte Carlo variance substantially.

 Note that equation (9.1), or forms thereof such as (9.7) and (9.8), are not the only
 possible ways to obtain Monte Carlo estimates of likelihood ratios. In particular,
 Meng and Wong (1996) have considered a variety of forms of importance sampling
 and Rao-Blackwellization, noting that (in the notation of this chapter)

 (9.11) L(O) _ Pa(Y) _ E90(Po(X,Y)a(X) I Y)
 L(0o) Poo(Y) Eo(Poo(X,Y)a(X) I Y)

 where a(X) is an arbitrary function on the space of X values (provided the
 expectations exist, and the distributions have the same support). If a(X) =
 1/Poo(X,Y), equation (9.11) reduces to equation (9.1). Note that whereas use
 of equation (9.1) requires MCMC only at 00, the expectation in the denominator
 of equation (9.11) requires MCMC at the value 0. Various other choices of a(X)
 have been investigated in the recent MCMC literature. Jensen and Kong (1999)
 have used a version of equation (9.11) in their MCMC estimation of a single-marker
 linkage lod score on a complex pedigree.

 As for the ratio estimator (7.17), the expression (9.11) is a ratio of expectations,
 and thus the Monte Carlo estimator is a ratio of averages over two sets of Monte
 Carlo realizations. For the estimator based on (7.17), the sampling distribution is
 the same in numerator and denominator, and thus Monte Carlo variance could
 be reduced, and computational efficiency enhanced, by using the same Monte
 Carlo realizations in the estimates of numerator and denominator. However, for
 the likelihood ratio estimator based on (9.11), different sampling distributions are
 required, so different Monte Carlo Markov chains must be run for the numerator

 and denominator. If MCMC is being done in any case at a set of values Oj, for
 example as in section 9.2, this does not impose any increased computational burden
 for the Monte Carlo itself. However, long runs may be needed to reduce the Monte
 Carlo variance of the estimate of L(9)/L(9O) to acceptable levels.

This content downloaded from 
������������128.95.104.109 on Sat, 19 Sep 2020 13:28:15 UTC������������� 

All use subject to https://about.jstor.org/terms



 9.5. LIKELIHOOD ESTIMATION OF GENE LOCATIONS 123

 9.5 Likelihood estimation of gene locations

 FM

 Ml M2 M3 M4 M5

 YT

 FIGURE 9.1. Model parameters for estimation of a location likelihood curve

 In modern genetic analysis, a primary goal is the localization of trait genes.

 Genetic markers have been mapped throughout the genome at a scale suitable for
 multipoint linkage analysis. Thus, estimation of location lod score curves (sections

 6.2, 7.6) is an important goal. Here we denote the marker model parameters by
 FM. For a complex trait, the trait model parameters are also unknown. These

 parameters, ,B, determine the probabilities of phenotypes given the latent genes.

 While in some analyses, joint maximization of the likelihood with respect to trait
 model ,B and trait locus position ry may be attempted, often the location lod score

 curve is computed for fixed /. The likelihood (or a profile likelihood) is evaluated
 as a function of a hypothesized trait-locus location -y, against a fixed marker map
 FM. The parametrization of the overall model is shown in Figure 9.1 The overall

 model is indexed by parameter 0 (/3, -y, rM). As before, the likelihood is

 L(0) = Po(Y) = ZPo(Y I X) Po(X)
 x

 (equation (7.8)) which may take the form (1.5) if X = G, the underlying genotypes,
 or (4.11) if X = S, the inheritance patterns of genes. For computations with
 multiple marker loci, the Lander-Green paradigm (4.11) is more natural and more
 effective, but exact computation is limited to small pedigrees.

 As in the discussion of Elods (equations (4.8) and (7.15)), for convenience
 we partition the data Y into the trait data YT and marker data YM. The
 corresponding latent variables are partitioned into XT and XM. Monte Carlo
 estimation of the location likelihood ratio is always feasible. The form that follows
 directly from equation (9.1) is

 L(/3, y7, rM)
 L(/3, -yo, FM)

 Eo PO, (YT, YM| XT, XM)P01 (XT, XM) yT YMy
 PO, (YT, YMI XT, XM)PO (XT, XM) T,M}

 for two hypothesized trait locus positions 71 and -yo. Noting the fact that only the
 position of the trait locus differs between numerator and denominator, the above
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 equation reduces to

 L(3, 71, FM) = E0 (PY1 (XT | XM) IYT YM
 (9.12) L(/3, -yo, rM) P-0 (XT XM) T, J

 Thus only the conditional probability of trait-locus latent variables given marker-
 loci latent variables appears explicitly in the estimator. Although realization of
 the latent variables is complex, and requires MCMC methods, computation of the
 estimate from the realizations is generally very straightforward (Thompson and
 Guo, 1991).

 One practical difficulty of the above approach is accurate estimation of log-
 likelihood differences for trait locations in different marker intervals. The likelihood-

 ratio estimate (9.1) works well in comparing locations within an interval, and
 in principle the mixtures method (9.2) facilitates estimation between intervals.

 However, in practice, values of XT realized at -yo may have very small probabilities
 under 71 if there is a marker locus between the two positions. Additionally, the usual
 objective is to estimate the lod-score relative to the base-point in which the trait
 locus position y is not within the marker map IM. That is, the null hypothesis that
 the trait locus is unlinked. Again this can be accomplished by using the mixtures
 method (9.2), but several intervening positions -y, linked to but not within the
 marker map, may be required for effective estimation (Thompson, 1994b). The
 procedure becomes computationally intensive.

 Another disadvantage of the approach of section 9.1 and this section is the fact
 that it allows estimation only of likelihood ratios, not of likelihoods. A modification
 is due to Lange and Sobel (1991) for the particular case of Monte Carlo estimation
 of location likelihoods. Their procedure also avoids the problems of sampling of
 the trait locus variables. Again, we assume the marker map and parameters rM
 known, so that PrM (YM) is a constant factor in the likelihood. Then Lange and
 Sobel (1991) write the likelihood in a form which, using our current notation,
 becomes

 L(3, 7, FM) = Po,y, M (YM, YT)
 PO,y,Fm (YT YM)

 = ZP,y(YT | XM)PFM (XM I YM)
 XM

 (9.13) = ErAI(P,(YT I XM) I YM).

 Now latent variables XM are sampled from their conditional distribution given the

 marker data YM. Provided exact computation of PO,y(YT I XM) is possible for
 alternative trait models (/) and locations (7), we have a Monte Carlo estimate of
 L(/3, y, rM). Comparison to the unlinked base-point requires only computation of
 Pfl(YT), the probability of trait data under the parameters 3 of the trait locus
 model. This can be accomplished by single-locus peeling methods of Chapter 6.
 Since rM is fixed, the Monte Carlo requires only a single set of realizations

 {X(r), T 1 ... , N}. The disadvantage is that PO,-,(YT I XM)) must be computed
 for each such realization; this requires a single-locus peeling computation for the
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 9.6. MARKER IBD AND COMPLETE-DATA LOG-LIKELIHOODS 125

 trait-locus data under the trait model. Further, this computation must be done,
 not only for each realization X(') but also for each : and -y at which a likelihood
 estimate is required.

 In many cases, however, the gains outweigh the costs, except when the simulation
 distribution PrM (XM I Ym) is not close to proportional to the ideal importance-

 sampling target distribution P,_,rm (XM I YM, YT). This is particularly so for
 models (trait locations) ay which are not close to the truth, and for a trait which
 provides substantial information about the inheritance patterns of genes at the
 underlying trait locus, and hence also at linked marker loci. In fact, the cases
 where the Monte Carlo estimator based on equation (9.13) performs poorly are
 precisely those in which the likelihood ratio estimator (9.12) also has difficulties.
 There continue to be interesting open questions in the estimation of multilocus
 linkage likelihoods.

 9.6 Marker ibd and complete-data log-likelihoods

 Again suppose that, as in sections 7.5 and 9.5, we have trait data YT and marker
 data YM. Further, suppose that the marker map FM, marker allele frequencies and
 marker population genotype frequencies are known, Consider also the case where

 the latent variables Xm are the meiosis indicators SAm. As described above, MCMC
 methods, and in particular the M-sampler of section 8.4, provide effective methods
 for sampling from the conditional distribution PrM (SM I YM). Among pedigree
 members, the patterns of gene ibd at marker loci are functions of SM; J = J(S)
 (section 3.6). Thus we have MCMC estimates of the conditional probabilities of
 gene ibd at marker loci, given the marker data.

 Neither trait data, YT nor trait model enter into this sampling of marker latent
 variables conditional on marker data. However, under any trait model with some
 genetic component, related affected individuals or related individuals exhibiting
 extreme trait values will share genes ibd at trait loci with some increased probability.
 Hence also they will share genes ibd with increased probability at marker loci
 linked to those trait loci. In so-called "non-parametric" computations for linkage
 detection, marker data on a pedigree are analyzed to detect regions of the genome in
 which there is evidence for excess gene ibd among affected individuals, or individuals
 exhibiting extreme trait values. Such regions provide evidence for linkage.

 The Monte Carlo sampling of SM given marker data YM provides direct
 estimates of conditional probabilities of patterns of gene ibd J(SM). These gene
 ibd probabilities at locus j are computed dependent on all the marker data YM,

 as, for example, are the probabilities Qj (S.,j) of section 7.1. Here we have only
 Monte Carlo estimates of these probabilities, but MCMC realization on larger
 or more complex pedigrees is feasible in cases for which exact computation is
 not. Moreover, the resulting gene ibd patterns J(SM) may be scored jointly over
 haplotypes, and over loci. The example of section 4.5 showed the importance of
 considering both individuals and loci jointly. For the case where only marker data
 are considered, many of the problems of the Monte Carlo estimation procedures
 are much reduced, provided a good MCMC sampler is used (see sections 8.3, 8.4).
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 The statistical problem becomes one of development of appropriate test statistics, to
 detect linkage on the basis of estimated conditional ibd probabilities. Although most
 current methods involve statistics computed marginally over loci, and pairwise over
 individuals, there is an increasing literature in this area; see for example Whittemore
 and Tu (1998).

 Another readily computed by-product of MCMC on pedigrees, or in any

 latent-variable problem, is the expected complete-data log-likelihood, Hy (0;9 o)
 (section 2.4). Returning again to the full data Y and latent variables S, at a
 general model indexed by parameters 00 we have

 Hy(0;9o) = Eo0(logPo(S, Y) I Y)
 (9.14) = Eo0(log,Po(Y I S) + log,Po(S) I Y).

 For easier comparison with statistical results, we use natural (base-e) logarithms
 throughout this section. Due to the a priori independence of meioses

 m

 (9.15) log Po(S) = ElogPo(Si,.)

 and, provided data are locus-specific,

 L

 (9.16) log Po(Y S) = ElogPo(Y.,
 j=1

 (see equation (4.11)). Thus the expectation partitions into terms for each locus and
 for each meiosis. These terms must be computed in any case in the course of the
 MCMC, making accumulation of values for the estimated expectation particularly
 straightforward. Note that (9.15) depends only on the genetic map parameters,
 while (9.16) depends on the penetrance aspects of the model. In expectation,
 under the conditional distribution P0o (- Y), each term depends, of course, on all the
 parameters in 90. The expected complete-data log-likelihood, with its component
 parts, proves to be a useful diagnostic measure of the performance of the MCMC.

 The above discussion depends on the decomposition

 log Po (S, Y) = log Po (Y I S) + log Po (S).

 Reversing the decomposition of the complete-data log-likelihood

 log Po (S, Y) = log Po (Y) + log Po (S I Y).

 Thus, as in equation (2.9), differences in expected complete-data log-likelihoods
 depend on the true log-likelihood difference and the Kullback-Leibler information
 (section 2.2) in the distribution of S given Y. That is,

 Ky (0; So) = Eo (loge Po. (S IY) - loge Po (S IY) I Y = y),
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 so the difference in expected complete-data log-likelihoods is

 Hy(9o; So) - Hy(0; o)

 = E0o (log Poo (S, Y) I Y) - Eo (log Po (S, Y) I Y)
 = EEo (log Po. (Y) + log Poo (SIY) - log Po(Y) - log Po(SIY) I Y = y)
 = log Po.(Y) - log Po(Y) + Eo0(PoF(SIY) - log Po(SIY) I Y = y)

 (9.17) = t (0) - t(0) + Ky(0; So).

 The extent to which this identity can be exploited in making inferences from MCMC
 output is also an area of ongoing research.
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 Chapter 10

 Case studies using the M-

 and LM-samplers

 10.1 Background to a study

 Much of the material in sections 10.1 to 10.5 has recently been published
 (Thompson, 2000a). It was presented at a one-day Royal Statistical Society
 conference in March 1999, and was discussed again in July 1999 at the CBMS
 Summer Course. Section 10.6 is the result of more recent work.

 First, the methods of the previous chapters are illustrated using data based on
 an extended Icelandic pedigree, provided by Dr. J. H. Edwards. The trait, apparent
 in three families, was thought to be a simple recessive, with an animal analogue
 suggesting a possible location on human Chromosome 1 (Remmers et al., 1996).
 However, findings were negative, and for purposes of illustration Heath and
 Thompson (1997) simulated marker data, conditional on a recessive trait locus
 in the chromosomal region. The resimulation of data assumed the same marker
 locations, population allele frequencies, and marker phenotype availability as in
 the original data. Marker data were simulated conditional on descent paths at the
 trait locus that implied that the four affected final individuals would be so. No
 phenotypic assumptions were imposed for other pedigree members. Using these
 simulated data, there was some evidence for excess gene identity by descent among
 the six parents of affected individuals (Heath and Thompson, 1997). However,
 in attempting to analyze these simulated data, under the assumption of a rare
 recessive trait, findings were ambiguous, primarily due to the fact that no founders
 were ancestral to more than three of the six parents of the affected individuals,
 even though the ancestry of the families was fully traced for seven generations.
 Accounting for the affected individuals required three separate origins of the
 recessive disease allele within the pedigree. For current purposes, we have therefore
 also modified the pedigree structure, making possible a single ancestral origin of
 the disease allele, and realized disease ancestry accordingly (Figure 10.1).

 Conditional on the realized gene ancestry, we have resimulated marker data.

 129
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 130 CHAPTER 10. CASE STUDIES USING THE M- AND LM-SAMPLERS

 AP v~~~~~~~~~~~~~~~f

 Aff Aff Aff

 FIGURE 10.1. The modified Icelandic pedigree. The four individuals marked "Aff" are affected.
 Those shaded black have marker data available at the majority of the 17 marker loci. The affected
 half-shaded individual is typed at only two of the marker loci

 Since the data are simulated, we avoid difficulties caused by errors in marker map
 or in meiosis model assumptions -for example we did not incorporate recombination
 heterogeneity between the sexes. The marker allele frequencies and data availability
 are as in the original data. Very few data are available on the affected individuals
 themselves (two markers on only one of the four cases), and overall the pedigree is
 quite sparsely observed, with the data being on the majority of the close relatives
 of affected individuals (Figure (10.1)).

 There are data at 17 marker loci, some of which are quite polymorphic, exhibiting
 up to 7 alleles, even among the 18 observed individuals. Some were also tightly
 linked: indeed the ones adjacent to the putative trait locus were less than 2cM
 apart. In simulating marker data, using the original map, we obtained haplotype
 sharing among the three nuclear families containing affected individuals over 5 or
 6 markers. To have data corresponding to modern linkage detection problems, we
 resimulated data using a genetic map with marker intervals at 10% recombination
 frequency, with the disease locus at the center of one interval (recombination 0.0528
 to each flanking marker). Some realizations then gave almost no genes ibd among
 the three families at any marker locus, with obvious consequent problems for linkage
 detection. The necessary scale of the map is dependent on the pedigree structures
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 locus number of true true

 alleles ibd state phenotypes
 trait 2 aaaaaa 222222

 Ml 6 bd-mkz 226166

 M2 7 bdgmkz 575373
 M3 6 bdgmxz 656155

 M4 6 bdgmxz 364442

 M5 4 behmvz 333333

 M6 3 behmvt 113311

 M7 6 b e i a x t 643624

 M8 7 b e i a n t 445426

 M9 7 b a - a - a 576677

 M1o 6 aaaaaa 444444

 Mul 8 bawwwy 378887

 M12 4 bav-wy 142123

 M13 5 b fw- - y 312425

 M14 6 bfwpxy 125323
 M15 7 bempxy 156447

 M16 7 b - n r x z 727324

 M17 7 -- rwxz 136344

 TABLE 10.1. True gene identity by descent simulated on the modified Icelandic pedigree

 available for analysis (Thompson, 1997). However, our chosen data realization did
 exhibit a gene ibd in all six parents of affected individuals at one of the two markers

 flanking the disease locus. Since the data are simulated the "true" trait location is

 known; this is mid-way between markers M1O and Mll.

 The simulated data in three affected offspring individuals are shown in

 Table 10.1. For true ibd status, each letter indicates a different founder haplotype.

 A founder origin occurring once only in the set of six haplotypes is denoted "-".
 The disease allele at the trait locus is allele "2". Note that, apart from data at two
 loci for one individual, the marker types of affected individuals are not observed.

 Observations are available only on relatives of these individuals. Thus, at locus M4,
 although there are only three like alleles in the six haplotypes of affected individuals,
 the observed data permit the possibility that four of the six genes are ibd.

 10.2 Conditional gene ibd probabilities

 Given the trait and marker phenotypic data, we first analyzed conditional
 probabilities of gene identity by descent among haplotypes segregating from each

 member of each of the three parent couples with affected offspring. The marker
 allele frequencies and recombination probabilities used in simulating the data were
 assumed in the analysis. The trait allele frequency was assumed to be q = 0.001.
 This low value makes very probable a single origin of the disease allele in the
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 Probability x 1000 Probability x 1000

 Locus All non-ibd 4 or more ibd

 (1) (2) (3) (4) (1) (2) (3) (4)
 trait 937 0 0 0 0 978 997 969

 Ml 879 988 907 746 0 0 0 0

 M2 906 999 879 306 0 0 0 0

 M3 975 925 906 10 0 0 0 0

 M4 874 863 808 17 0 0 0 425

 M5 924 843 755 263 0 0 1 39

 M6 931 726 742 532 0 0 0 2

 M7 901 971 682 689 0 0 0 0

 M8 919 751 414 589 0 0 0 0

 M9 864 685 28 458 0 2 508 18

 Mi1 676 539 0 387 4 7 982 30
 Mul 872 434 13 532 0 0 0 0

 M12 879 406 180 598 0 0 0 0

 M13 870 643 370 672 0 0 0 0

 M14 872 867 589 773 0 0 0 0

 M15 988 894 978 988 0 0 0 0

 M16 947 916 963 980 0 0 0 0

 M17 993 894 981 990 0 0 0 0

 TABLE 10.2. Conditional probabilities of gene identity by descent given the marker data simulated

 on the modified Icelandic pedigree. Shown are probabilities x 1000. For details of the cases (1)-
 (4), see text

 pedigree. There are in all 39 founders in the pedigree, and hence 78 founder genes
 at the disease locus, but only the four in the original couple are ancestral to all the

 six carrier parents of affected individuals. The 203 (potential) patterns were scored
 marginally at each marker. Several cases were considered:

 (1) All markers and the trait locus independently segregating (unlinked). A null

 trait locus provides the single-locus prior probability of ibd given only the pedigree

 structure

 (2) Correct map for marker data. The correct recessive trait model and affected
 trait status of individuals is assumed, but the trait locus is modeled as unlinked to
 the markers.

 (3) Correct map, with trait locus in correct location between M10 and Mll.
 (4) Correct marker map, with trait locus in incorrect position between M3 and

 M4.

 For the trait locus, one member of the original couple was specified to be a

 heterozygous carrier, and the other a non-carrier. No assumptions were made about

 the trait genotypes of any other founders or ancestors. The affected individuals

 whose haplotypes were scored were assumed homozygous for the disease allele.

 The results are summarized in Table 10.2. Each column refers to the specified one
 of the four cases (1)-(4) given above. The table consists of probabilities multiplied
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 by 1000 for ease of presentation. The first set of four columns gives the conditional
 probabilities of no ibd among the six haplotypes. The second block of four columns
 gives the total conditional probability of ibd patterns in which at least four of the

 six haplotypes are ibd. The MCMC incorporates jointly the information from all
 linked loci, although the conditional probabilities are here summarized marginally
 for each locus. Since the MCMC runs jointly over loci, scoring of joint realized
 patterns is also possible.

 The sampler used here is the M-sampler (section 8.4), so one MCMC step consists

 of resampling the meiosis indicators Sij jointly for all 18 loci for a randomly chosen
 meiosis i. Each run consists of 107 meiosis MCMC steps, and takes about 12 hours
 on a workstation running a shared LSBatch system. States of ibd are only output
 if the sum over loci of the estimated conditional probability is greater than 0.001.
 Given the marker data, more states are thus feasible than are given in the output
 summary: states which were realized in the MCMC with low frequencies do not
 appear.

 Although the marker data alone do not suggest high levels of gene ibd among
 affecteds, the conditional probability of some ibd among the six haplotypes in the
 region of the true trait location (M9,M1O,M11) is high. Even independently, column
 (1), there is evidence of some gene ibd in this region, particularly at marker M10.
 The values in this column may be compared with the single-locus prior. Based only
 on the pedigree structure, the probability of no gene ibd is 0.937. The trait locus
 itself contains a lot of the information on segregation (Table 10.2). Even in the
 absence of marker data, the trait information reduces the probability of no gene ibd
 among the six haplotypes from 0.937 to close to 0, and increases the probability of
 four or more haplotypes ibd from close to 0 to 0.978.

 When the trait locus is hypothesized in its true position, very high levels of gene
 ibd are estimated at the adjacent marker M10, while the high levels at the trait
 locus itself are reinforced. Disconcertingly, when the trait locus is hypothesized
 in an incorrect position, ibd at the trait locus is only slightly decreased, while
 estimated ibd probabilities at loci in the region of this incorrect position (M3,
 M4, M5) are much increased. The strength of the information provided by the
 segregation pattern of this rare recessive trait makes inference of gene location
 difficult. Since marker data are very sparse on the pedigree, it is possible for the
 marker descent patterns to adapt to alternative hypothesized gene locations.

 10.3 Likelihoods and log-likelihoods

 We then attempted a Monte Carlo estimate of the full location lod score, assuming
 each of the six parents of affected individuals to be heterozygous for a very rare
 recessive trait allele. However, the Monte Carlo likelihood estimation methods
 of Chapter 9 failed to converge. A plot of the expected base-e complete-data
 log-likelihoods (equation (9.14)) from this same Monte-Carlo run reveals why
 (Figure 10.2). The MCMC was performed at hypothesized trait locus positions -Yo
 in the center of each marker interval, at positions linked but outside the span of the
 markers, and also with the trait locus unlinked. The complete-data log-likelihood
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 0
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 FiGURE 102. Expected complete-data log-likelihood components for the simulated data on

 the modified Icelandic pedigree. Shown are E_0 (1og, Pr(Y I S)I Y) (upper curve), and
 E-t0 (log,, P-, (S) IY) for -y ='yo (., lower curve), and for -Y to the left (A) and right (-F) of
 ^to+ The location U denotes unlinked. For additional details see text

 is partitioned into segregation (equation (9.15)) and penetrance (equation (9.16))
 parts. The figure shows first the penetrance contribution E-M (log Pr(Y I 5)I Y)
 to the expected complete-data log-likelihood for each simulation position (upper
 curve). This conditional probability does not directly depend on the hypothesized
 trait location, -y, although the expected log-probability does so through the realized

 S. The segregation contribution EIY0 (log P,u(S) I Y) depends both on the simulation
 location -yo, and on the evaluation location -y. The figure shows the values for each
 simulation position -yo (lower curve), with evaluations at '}o and at positions one
 step to the left (A) and to the right (?).- Shown also are three example connections
 of realizations at a given ^Yo, shown as.*, with the same realizations evaluated to the
 left (A) and right (+). These log-likelihood differences are of order 25, indicating
 that S-values realized at a given 1yo are of order e25 less probable under neighboring
 values: it is unsurprising the Monte Carlo estimation of the likelihood is infeasible.

 The expected complete-data log-likelihood is not only useful in diagnosing failure;
 it also provides some evidence regarding alternative models. For the four cases (1)-
 (4) considered in section 10.2, the complete-data base-e log-likelihoods averaged
 over each run are -1704, -1061, -982 and -998 respectively. Clearly, the assumption
 that the marker loci are unlinked (-1704) is unwarranted. The other three runs
 assume the correct marker map, with the trait locus unlinked, correctly positioned,
 and incorrectly positioned, respectively. The largest expected complete-date log-
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 10.4. GENE IBD IN A SMALLER EXAMPLE 135

 likelihood is obtained when the model is correct, while the value under the model

 that the trait locus is unlinked is almost 80 units smaller. Summing the two

 curves, for the penetrances, log Pr(YIS), and segegrations, log Pr(S) in Figure 10.2,
 we see that the maximum expected complete-data log-likelihood is obtained for
 trait locations between marker M8 and marker Ml1. Within this range there is
 little discrimination, but outside these three marker intervals both segregation and

 penetrance contributions decrease markedly.

 10.4 Gene ibd in a smaller example

 FIGURE 10.3. Hypothetical phenotypic data assumed at each marker locus on the pedigree of

 Figure 1.1. The four potentially distinct C alleles are labeled Cl to C4

 To examine the performance of the MCMC method in more detail, we consider a
 smaller example, returning again to the pedigree of Figure 1.1. We suppose marker

 data as in Figure 3.5 at each of five marker loci, with recombination frequency
 20% between adjacent markers (genetic distance 25.54 cM under a no-interference
 meiosis model). The trait data, for a rare recessive trait, is only that the final
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 Mi M2 Tr M3 M4 M5

 t p=0.2 r Po po = p=0.2 t p=0.2 t

 d = 25.54 do do d = 25.54 d = 25.54

 FIGURE 10.4. Marker (Ml to M5) and trait (Tr) locations for the example of Figure 10.3. The
 trait locus is at the midpoint of the (M2, M3) interval, so do - 12.77cM and po - 0.1187

 gene ibd pedigree marker loci trait locus

 pattern prior M3 M5 q = 0.001 q = 0.05

 all 4 genes ibd 29 182 127 275 189
 3 of 4 genes ibd 156 381 355 400 317
 2 pairs of ibd genes 84 129 119 85 88
 2 of 4 genes ibd 484 250 303 238 327
 all 4 non-ibd 247 58 96 2 79
 complete-data log-likelihood: segregations -44.7 -45.1
 complete-data log-likelihood: penetrances -40.2 -37.1

 TABLE 10.3. Conditional probabilities (xlOOO) of gene ibd among the four C alleles on the
 pedigree of Figure 10.3, with five equally spaced marker loci, Ml to M5, and for a recessive trait
 unlinked to the markers

 trait with q = 0.001 trait with q = 0.05
 gene ibd pattern trait M3 M5 trait M3 M5
 all 4 genes ibd 390 344 155 361 326 152
 3 of 4 genes ibd 530 394 372 504 446 370
 2 pairs of ibd genes 27 78 122 40 84 121
 2 of 4 genes ibd 53 176 279 86 130 283
 all 4 non-ibd 0 8 72 9 14 74
 complete-data log-likelihood

 segregations -38.5 -38.6
 penetrances -39.1 -35.6

 TABLE 10.4. Conditional probabilities (xlOOO) of gene ibd among the four C alleles on the
 pedigree of Figure 10.3, with five equally spaced marker loci, Ml to M5. The trait is now in the
 map, midway between M2 and M3

 individual of the pedigree is affected. Initially a trait allele frequency of q = 0.001
 was assumed, although a value q = 0.05 was also considered.

 At each of the five marker loci, frequencies 0.2, 0.2, 0.4 and 0.2 were assumed
 for alleles A, B, C, and D, respectively. Of particular interest in this test example
 is the potential for gene ibd among 4 potentially distinct C alleles, labeled C1 to
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 C4 in Figure 10.3. At each marker locus, given these marker phenotypes, all 15
 possible patterns of gene ibd among these four C-alleles are possible. The C allele
 was given a relatively high frequency in order to give the possibility of four distinct
 origins non-negligible probability, while in contrast the trait was assumed rare to

 give high conditional probability that the affected individual is autozygous (has two
 ibd genes) at the trait locus.

 Tables 10.3 and 10.4 summarize the conditional probabilities, when markers

 are run unlinked to the trait locus, and when the locus is in the mid-point of
 the second of the four marker intervals (Figure 10.4). Trait allele frequencies of

 q = 0.001 and q = 0.05 were each used. Each run consists of 107 M-sampler steps,
 each step selecting a random meiosis for update. We see a similar pattern to the
 example of section 10.2. Table 10.3 shows that each of the marker and trait data

 separately increases the conditional probability of gene ibd among the like alleles

 and decreases the probability of non-identity, relative to the prior based only on
 the pedigree structure. When the trait locus is within the marker map, the trait

 and marker data together reinforce the inference of gene ibd (Table 10.4). However,
 the effect of hypothesizing a trait location within the map on the inference of ibd
 at the marker loci is not nearly as strong as for the example of section 10.2. The
 effects are stronger for a rarer trait, both when unlinked (Table 10.3) and when
 linked (Table 10.4). However, the 50-fold change in allele frequency from q = 0.001
 to q = 0.05 has a relatively minor effect. Of course, when the trait is unlinked,
 changing trait allele frequency does not impact marker ibd. When the trait is

 linked, the impact of trait data on marker ibd is larger for the adjacent marker M3
 than for the terminal marker M5. The 50-fold difference in trait allele frequency
 (Table 10.4) has a moderate impact at the adjacent marker M3, but almost no
 impact at the terminal marker M5. The total complete-data log-likelihoods are
 larger when the trait is in the map, indicating evidence for linkage. The penetrance
 terms differ by about 3 between q = 0.001 and q = 0.05, the latter value giving
 higher probabilities.

 10.5 MCMC lod score estimation

 For the example of section 10.4, exact lod scores can be computed using

 GENEHUNTER 2 (Kruglyak et al., 1996; Kruglyak and Lander, 1998). These
 are shown in Figure 10.5. The two solid lines show the base-10 lod scores for trait
 locus position when the previous the marker data are assumed on five members of

 the pedigree. The higher curve corresponds to a trait allele frequency q = 0.001,
 and the lower to q = 0.05. The two broken curves show the base-10 lod scores
 when the marker data consist only of the final individual being homozygous for
 marker allele C with allele frequency 0.4, at each of the five marker loci. Again the
 upper curve is for q = 0.001 and the lower for q = 0.05. Note that the differences
 between the lod score curves for q = 0.001 and q = 0.05 are not large, although
 there is more evidence for linkage when a rarer trait frequency is assumed. This is
 a 50-fold change in allele frequency, and thus a 2500-fold change in the frequency
 of the recessive phenotype. Since there are only five founders in the pedigree, even
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 FIGURE 10.5. Exact base-10 location lod scores computed using GENEHUNTER 2. The solid

 lines correspond to having marker data on five pedigree members, and the broken lines to having
 marker data on only the final affected inbred individual. In each pair, the upper curve corresponds
 to a trait allele frequency q = 0.001, and the lower to q = 0.05

 at this much higher trait allele frequency the probability of two separate origins of
 the allele in the pedigree is small.

 We note that the shape of this location lod score curve is atypical, with maxima
 at the markers due to the assumption of the same marker data at each locus. This
 complete concordance of the data, and its consistency with absence of recombination
 between trait and markers, leads to the symmetry of the curve and to local maxima
 of the lod score which occur at rather than between the markers. We see that
 most of the information for linkage is in the data on the final individual; this
 is the power of homozygosity mapping for a rare recessive trait, as discussed in
 section 4.6. However, at loose linkage to the marker loci, the marker data on the
 additional four individuals do impact the lod score curve. Due to the particular
 marker data assumed, whereby the C3 allele is known not to be transmitted to the
 final individual (Figure 10.3), lod scores are sharply decreased outside the map,
 and in fact are slightly negative at looser linkage.

 Attempting estimation of this lod score curve, using the M-sampler as before,
 gave improvement over the example of section 10.3, although not fully satisfactory
 results. The expected complete-data base-e log-likelihoods for the case q = 0.001
 are shown in Figure 10.6, again separated into the penetrance and segregation
 contributions. As before, the average log-probability of meioses sampled under
 hypothesized trait location -yj is much larger under that location than under
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 FIGURE 10.6. Expected complete-data log-likelihoods with the hypothetical data of Figure 10.2
 assumed at each of five equally spaced linked marker loci. The notation is as in Figure 10.2
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 the difference is less than 5 rather than 25. Although e 5 is two orders of magnitude,
 estimation of the location score curve is now feasible in the sense that the methods

 converge to provide an estimate.

 The method of equation (9.4) of section 9.2 is used, estimating only likelihood
 ratios at the two points adjacent to the simulation value in each estimating
 equation. Thus ideally, solution of equation (9.4) should provide an eigenvalue
 of 2. However, although gene ibd probabilities appear to be reliably estimated,
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 diagnostics suggested the sampler was not mixing well, and different runs gave
 substantially different lod score estimates. By comparison with exact values
 (Figure 10.5), the lod score was overestimated. One resulting lod score estimate is
 shown in Figure 10.7.

 In the hope of improving performance, the assumed trait allele frequency was
 increased to q = 0.05. The true lod score is not much affected (Figure 10.5).
 Unfortunately, neither is the Monte Carlo estimate; curves very similar to that
 of Figure 10.7 were again obtained. However, the MCMC performance was
 more robust at the higher trait allele frequency, with much better agreement
 between runs. For a run giving final estimates indistinguishable from those of
 Figure 10.7, the relevant eigenvalue of equation (9.4) was 1.94, apparently close
 to the "perfect" value 2. This indicates indicates good agreement of the ratios
 provided by simulations at adjacent points.

 Despite this apparent success, the absolute values of the log-likelihood differences
 are still overestimated. As seen in the next section this is primarily due to an
 insufficient number of simulation points for the MCMC. Additionally, the method
 of combining the likelihood ratio estimates into an overall lod score appears often
 to give a positive bias. The Monte Carlo estimator based on equation (9.1), of
 the ratio of the likelihood at an adjacent point to that at the simulation point, is
 unbiased. However, the statistical properties of the estimation method based on
 equation (9.4) are unclear. All that is guaranteed is that the resulting estimator of
 the lod score is consistent, as the number of realizations at each simulation point
 becomes infinite. Finally, the value 1.94, although "close" to 2, was less close than
 with better MCMC samplers sampling at more trait locations. Then, a value in
 the range 1.98 to 2.02 is typically obtained.

 10.6 Better MCMC lod scores

 The M-sampler (section 8.4) does not suffer poor mixing due to tightly linked
 loci, but can mix poorly where there are extended ancestral paths of descent in a
 pedigree. Conversely, the L-sampler (section 8.3) works well on extended pedigrees,
 but mixes poorly with multiple linked loci. Combining the two samplers, say in
 the ratio of 10 M-steps to 1 L-step, can achieve more robust and reliable estimates
 with higher Monte Carlo precision (Heath and Thompson, 1997). The estimation
 of conditional ibd probabilities of section 10.4 was repeated using the LM-sampler,
 with an L-sampler proportion of 20%. This means that every step updates either a
 randomly chosen meiosis (M-step), or a randomly chosen locus (L-step), and each
 step is independently chosen to be an L-step with probability 0.2. For an equal
 number of total steps (in this example, 107), the MCMC runs took three times
 as much CPU, but the results of Tables 10.3 and 10.4 were unchanged both for
 q = 0.001 and q = 0.05. However, it is likely that the LM-sampler would achieve
 the same results with a smaller number of total steps.

 Using an LM-sampler, and assuming now the higher trait allele frequency of
 q = 0.05, more accurate Monte Carlo lod score estimates are obtained for the
 example of section 10.5. Shown in Figure 10.8 as a solid line is the exact base-10
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 FIGURE 10.8. Base-il0 location score curves for the example of section 10.5 re-estimated, shown
 also with the exact value

 L-sampler probability 0.0 0.2 0.2 0.2 0.2
 MCMC sample points
 unlinked 1 1 1 1 1

 each end 2 2 3 7 10
 each interval 1 1 3 4 4

 Total 9 9 19 31 37

 eigenvalue of (9.4) 1.942 1.979 1.993 1.999 2.002
 MCMC realizations/point 106 106 106 106 106
 CPU time (secs) 5,237 29,466 60,507 96,153 116,443
 Shown in Figure 10.7 10.8 10 .8 (*) 10.8

 TABLE 10.5. Summary of LM-sampler runs on the example of section 10.5. The penultimate
 run, designated (*), is the run also used for the results of Figures 10.9 and 10.10. The first
 column shows the M-sampler run discussed in section 10.5. The runs were done on a DEC alpha
 workstation 400-233, with 192 MB memory

 lod score computed using GENEHUNTER 2 (Kruglyak et al., 1996; Kruglyak and
 Lander, 1998). We note again that this lod score is atypical with local maxima at
 every marker, due to the assumption of the same marker data at each locus and its

 consistency with absence of recombination between trait and markers (Figure 10.5).
 This makes this lod score curve a challenge for Monte Carlo estimation, even though
 this pedigree is small. Also shown are three Monte Carlo estimates of the lod score,
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 with the MCMC done using the LM-sampler. As in previous sections, likelihood

 ratios were estimated only relative to adjacent trait locations, and the lod score

 estimation method of equation (9.4) was used to combine these into a single set

 of lod scores. Only lod scores at the simulation points are estimated. There is no

 attempt to interpolate between these points, which are connected by broken lines

 in Figure 10.8 for clarity only.

 For clarity and easier comparison, we show here only three curves, each done with

 an L-sampler proportion of 20%. The MCMC is performed with the trait locus in

 each of the positions indicated, starting with the trait locus unlinked. When the

 hypothesized trait locus location is changed, the first step is to update the trait

 locus meiosis indicators. The initial set-up is done using the L-sampler set-up for

 unlinked loci (Heath, 1997). On a large pedigree, with extensive marker data, some

 burn-in for the linked marker loci should therefore be included, but this was ignored

 in this example. The marker loci were not tightly linked (see Figure 10.4).

 The run characteristics and results are summarized in Table 10.5. The first
 column shows the M-sampler run of section 10.5 for comparison, but this curve

 is not shown in the figure. As can be seen from a comparison of Figure 10.7 and
 Figure 10.8, the results are similar when the same simulation points are chosen. This

 wide point spacing, with only a single point in each marker interval, leads to an

 overestimate of the lod score. With the LM-sampler (second column of Table 10.5),

 the upward bias is less, and the eigenvalue of the estimating equation increases

 from 1.942 to 1.979 closer to the idealized value of 2. Of greater relevance may

 be that the run takes almost 6 times as much CPU. On the positive side, the LM-
 sampler gives more consistent results. In fact, both runs were the first run at these

 computational settings. However, there was greater variability among runs using
 the M-sampler alone. With 106 MCMC steps at each simulation position for the

 trait locus, results using the LM-sampler were almost identical in repeat runs.

 The three curves shown in Figure 10.8 correspond to the second and to the last

 two columns of Table 10.5. Other runs, including some not listed in this table

 gave comparable results. Using the sample LM-sampler settings, but increasing the

 number of points for MCMC and likelihood-ratio estimation (Table 10.5), we obtain
 much better lod score estimates (Figure 10.8). With more points for estimation

 and evaluation, the bias in the estimated lod score is reduced or even eliminated.

 The eigenvalue of the estimating equation becomes increasingly close to the ideal

 value of 2.000. All curves with several points within the marker intervals managed

 to mimic the atypical dips of the true curve. More difficulty was encountered in
 getting the precise level of the curve, relative to the null hypothesis that the trait

 locus is unlinked. Even with seven linked evaluation and simulation points at each

 end of the map (Table 10.5), there are still adjacent simulation points at which the
 likelihood ratio is too large to be well estimated. The final run, with 10 evaluation

 points at each end of the map did well, even mimicking the true very slightly

 negative lod scores at each end of the map when the trait locus is close to unlinked.

 However, even here, there is a slight asymmetry and downward bias as the trait

 locus crosses the first marker. All the runs show this asymmetry when the trait

 locus is moved from across the map from left to right, and it is reversed when the

 direction is reversed. Possibly, more burn-in as the trait locus gets close to the
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 FIGURE 10.9. Expected complete-data log-likelihoods for the example of section 10.5, showJn for
 the penultimate run of Table 10.5. The notationl is as in Figure 10.2. As in that figure, the
 contribution from penetrance terms is shown separately from that for segregation terms

 For a given L-sampler proportion, the CPU time is almost directly proportional
 to the number of simulation points, or more generally to the total number of MCMC
 steps. An L-step appears to take about 20 times as long as an M-step; of course,
 this ratio is highly data-set and pedigree dependent. For comparison purposes,
 all runs were done on a 1995 DEC alpha workstation 400-233, upgraded to have
 192 MB memory. This machine is about four times slower than newer single-
 processor DEC alpha workstations with 1GB memory. In addition to computing
 the likelihood ratios, the program also produced the expected complete-data log-
 likelihoods (section 9.6) and the conditional probabilities of recombination in all
 intervals, in both male and female meioses. The, added computational cost of
 producing these useful diagnostics is slight.

 The expected complete-data log-likelihoods are shown in Figure 10.9, for the
 penultimate run shown in Table 10.5. The notation is the same as in Figure 10.2.
 The contribution from the penetrance terms Pr(YIS) is the upper curve, while
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 FIGURE IO. 10. Estimated conditional probabilities of recombination in the five map intervals for
 the example of section 10.5, shown for the penulti'mate run of Table 10.5. For details, see text

 the lower curve gives the expected value of P,(S). Each point is plotted at
 the coordinate corresponding to the trait location ty for which the probability is
 evaluated. For the penetrance curve, and the main segregation-probability curve
 (indicated by *), the simulation point and evaluation point are the same. A A
 indicates an evaluation point to the left of the simulation point and a + indicates
 an evaluation point to the right. As in Figures 10.2 and 10.6, a few corresponding
 (AE-* -+) triplets are connected by lines. By comparison with the Figure 10.6,
 we see that differences are now small between evaluations at adjacent locations of
 the log-probabilities of realizations at a given point: the (/\ - * - +) triplets. As
 expected, the log-probabilities are highest where the simulation point is also the
 evaluation point. However, for some evaluation points outside the marker map, we
 see that the probability is up to seven times (e2) larger for realizations at an adjacent
 point than at the point itself-the vertical (A\-*o- +) differences in the figure.
 Ideally, for accurate estimation of Monte Carlo lod score curves, both sets of log-
 probability differences should be small. The results suggested that more simulation
 points outside the marker map are needed, as also suggested by a comparison of
 the estimated and exact lod score curves of Figure 10.8. This led to subsequent
 production of the final run shown in the figure, and as the last column of Table 10.5.

 Figure 10.10 shows the conditional probabilities of recombination, given the
 marker and trait data, for each trait location, in each of the five intervals of
 the marker and trait locus map. For consistency, these are shown for the same
 penultimate run of Table 10.5. Each symbol represents a different interval; the
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 interval containing the trait locus changes as the trait locus moves across the marker

 map. For greater clarity the frequencies are shown on a log scale. The program
 estimates frequencies for male and female meioses separately, but these have been

 combined in the current figure. Even where, as here, the prior recombination

 frequencies are the same in male and female meioses, the frequencies conditional on

 data are not. The conditional probabilities depend on the specific marker data and
 the gender of individuals in whose meioses recombinations are imputed. Also shown

 in the figure, by broken horizontal lines, are the prior recombination frequencies

 between markers (20%), at trait locations outside the map, and for two of the four
 locations for the trait locus within each marker interval. Except for an unlinked

 trait locus, or very loose linkage, the concordant data at all the markers and at

 the trait locus depresses the conditional probabilities of recombination below their

 prior expectation. Even with these fully concordant data, however, the conditional

 probabilities are not small: each is about 85% to 90%c of the prior value.
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 Chapter 11

 Other Monte Carlo

 Likelihoods in Genetics

 11.1 Improving pedigree samplers

 The ways in which MCMC samplers can be extended, combined, and improved,
 are almost limitless. One method has been discussed in section 10.6. Where the
 pedigree is not too complex, so that the L-sampler is feasible (and practical),
 combining the L-sampler and M-sampler on extended pedigrees can achieve
 more robust and reliable results with higher Monte Carlo precision (Heath and
 Thompson, 1997). The M-sampler (section 8.4) does not suffer poor mixing due to
 tightly linked loci, but can mix poorly where there are extended ancestral paths
 of descent in a pedigree. Additionally, the M-sampler may not be irreducible.
 Since the L-sampler is irreducible (section 8.3), combination of the L-sampler and
 M-sampler can ensure irreducibility, as well as improve mixing. Whereas the L-
 sampler is often the more computationally intensive, and seems to take longer to
 achieve stable probability estimates, the M-sampler may simply fail to sample the
 part of the space containing the majority of the probability mass (Table 11.1). The
 examples of section 10.6 all combined L and M steps with the same probability
 (20%) that any given step is an L-step. Obviously, there is scope for other patterns
 of systematic or random resampling.

 There are ways to improve the meiosis sampling itself. Updating all indicators
 at a meiosis jointly shows much improved performance over single-site updating
 (Thompson and Heath, 1999). Moreover, updating by- meiosis avoids problems
 of poor mixing due to tight linkage. However, clearly there would be greater
 improvement if the vectors Si,. for several meioses i were to be updated jointly.
 Likewise the L-sampler can be improved. For very tightly linked loci, single-locus
 updates are ineffective. However, where feasible, the L-sampler might update jointly
 S.,j for several loci j. For the L-sampler, on a complex pedigree, usually no more
 than two or three loci can be updated jointly.

 One case where updating several meioses jointly is effective and easily done is

 147
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 Update by locus
 singly jointly

 Update singly single-site: Update Sij. L-sampler: Update S.,j.
 by Performance poor Performance poor for

 meiosis tight linkage

 jointly M-sampler: Update Si, LM-sampler. Improved

 Performance poor for mixing and more robust

 extended pedigrees estimation

 TABLE 11.1. Single-site and joint updating schemes on a pedigree

 pat,mat

 XJ: ,anc 4-plex

 A,anc meiosis

 0,anc

 FIGURE 11.1. A multiplex meiosis consisting of an ancestral chain of four meioses. These
 meioses may be jointly updated. For additional details, see text

 where there is a succession of several ancestral meioses over several generations

 with no phenotypic data, in each case there being one founder parent with a single

 offspring in the pedigree (Figure 11.1). A number of such chains may be seen in the
 pedigree of Figure 10.1. Recall (section 8.4) that, for such a founder parent, the
 meiosis to the single offspring is not scored. The relevant gene in each offspring (in
 this example, the paternal gene) is, in effect, a founder gene. We refer to the chain of

 meioses from the pedigree (non-founder) parents as a multiplex meiosis. For the first

 meiosis of the chain, we score, as usual, whether the offspring receives the parent's
 maternal or paternal gene. For subsequent meioses, the state is characterized by
 whether, at a given locus, the transmitted gene is the parent's gene from a peripheral

 (X) or pedigree (anc) parent. The state of the multiplex meiosis is characterized by
 the number of meiosis indicators in the chain that currently point to a gene from

 one of the peripheral founders (0,1,2,3 in Figure 11.1), and the state (0=maternal,
 1=paternal) of the first meiosis. With this specification, the transition probabilities

 remain first-order Markov along the chromosome. A pre-processing of the pedigree,

This content downloaded from 
������������128.95.104.109 on Sat, 19 Sep 2020 13:28:15 UTC������������� 

All use subject to https://about.jstor.org/terms



 11.2. INTERFERENCE BY METROPOLIS-HASTINGS 149

 assigning each multiplex meiosis its appropriate Markov transition probabilities, can

 greatly improve efficiency of the MCMC. There are fewer (multiplex) meioses to
 resample: in the example we have replaced four meioses with a total of 24 = 16
 states by a single multiplex meiosis with 2 x 4 = 8 states. For example, the state
 (1, 2) would denote that the first individual of the chain receives her mother's

 paternal gene, and that for 2 of the subsequent meioses the offspring receive their

 mother's founder gene. (In Figure 11.1, the founder parents are male, and the
 pedigree parents are female.) Although this single factor of two in the number

 of states is not large, repeated over a large pedigree this can lead to a significant
 reduction. More important than the number of states is the mixing of the MCMC.
 Even when transition probabilities for descent down the chain are small, with joint

 updating alternative descent paths for an allele are more readily sampled. The

 ability to change the descent path down the whole chain in a single MCMC step

 greatly improves mixing.

 The joint updating of meioses may be carried further. The Lander-Green

 algorithm for exact computation can be readily performed on up to 15 meioses.

 While one might not want to incorporate such an intensive computation into an
 MCMC, computation is quite feasible for, say, a subset of m* = 10 of the total set
 of m meioses in the pedigree. The procedure is exactly as in equations (8.8) and

 (8.9), except now that, instead of the two values of s, Q(s) must be evaluated and
 normalized for each of the 2mr vectors of the indicators for these m* meioses, say

 1024 values to be stored for each locus along the chromosome. Additionally the

 penetrance probabilities P(Y(i I S.,j) would be needed for each of the 1024 values.
 The extent to which improved mixing compensates for the increased computation
 remains to be investigated, but there is no doubt that joint updating will help

 in some cases. When the L-sampler in infeasible due to extreme complexity of the

 pedigree, joint updating of several meioses could ensure irreducibility of the meiosis

 sampler. However, this is an area where many open questions remain. In particular,
 on an extended pedigree, appropriate choice of the meioses to be updated jointly

 is far from obvious.

 11.2 Interference by Metropolis-Hastings

 In the absence of interference, but where different meioses exhibit different

 recombination probabilities, the procedure of resampling a whole meiosis jointly

 over loci (section 8.4) is more convenient than other forms of MCMC. Sex-specific
 maps can be routinely incorporated, provided they are known, and no assumptions
 regarding the relationship between male and female recombination frequencies

 are necessary. Each meiosis is resampled, and the relevant computations made,
 under the map appropriate to that meiosis. For multiplex meioses (section 11.1),
 which may contain individuals of different sexes. male and female meioses must be

 accounted separately, and the transition probabilities must be pre-computed, but
 there is no intrinsic computational difficulty.

 Genetic interference in meiosis (Chapter 5) is a more complex issue, since it
 destroys the first-order Markov conditional-independence structure of the meiosis
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 indicators along a chromosome. The assumption of first-order dependence in the

 S.,j is crucial to the computations of sections 6.1 and 7.1 and to the M-sampler
 as developed in section 8.4. There is no general computational algorithm for
 exact computation of multilocus linkage likelihoods under interference, although
 Weeks et al. (1993) and Lin and Speed (1996) have shown how to incorporate
 interference in some cases. However, as for any multilocus problem, exact likelihood
 computation on an extended or complex pedigree remains computationally
 infeasible. In fact, for exact computations under interference, the numbers of

 markers, and/or pedigree structures, are severely limited, and computation is
 cumbersome. The erstwhile practice of transforming recombination frequencies
 between markers using a genetic map function, and then performing a no-
 interference computation becomes increasingly futile as maps become denser, and
 marker data on observed individuals more complete.

 Although genetic interference is very seldom incorporated into linkage
 computations, it exists in human meiosis (Broman and Weber, 2000). Failure to
 incorporate it can reduce the power to detect linkage (Goldstein et al., 1995). In an
 analysis of data at multiple tightly linked markers from actual meioses, Thompson
 and Meagher (1998) have shown that interference can have a significant impact
 on patterns of joint segregation of genes at distances of 20cM to 30cM. Using our
 whole-meiosis M-sampler (section 8.4), since all the meiosis indicators for all the
 linked loci in an entire meiosis are resampled jointly, incorporation of an interference
 model is feasible.

 In the M-sampler, given marker data Y at loci j = 1, .. ., L, meiosis indicators

 at meiosis i, Si, = (Si,., , Si,L) are realized from

 (11.1) P(Si,. I Sk,., k i, Y) X P(Y I S) P( (S)

 where S is the total set of meiosis indicators for all loci at all meioses of the
 pedigree, and the super-script (H) denotes the Haldane (no-interference) model.
 We now continue to use equation (11.1) as our proposal distribution, and add
 a Metropolis acceptance step (Metropolis et al., 1953), to provide the correct
 conditional distribution of Si,. under interference (denoted p(I, (.)). The required
 Hastings-ratio h(St; S) (equation 8.2) for current S and proposed St is

 h(St;S) - P(I'(St,Y) p(H (Si,- Sk,.. k i ,Y)
 P(I (S Y) p(H (SIt Sk,.,k i,Y)

 pCI. (St, y)p(H (S, Y)

 p(I- (S, y)p(HW (St. y)

 P(Y15t)PCI. (St)P(Y1S)PCWH (S)

 p_ ylS p(I (S ) p(yJtpH (S t))

 k i PC(Sk,.) p(H<(Sk.)

 PUI(i . pUHI(St )
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 recombination prob under prob under prob under prob prob

 patterns model I model II model 0 ratio ratio
 d = 25.54cM d = 0.2cM d = 25.54cM (I) (II)

 , = 0.2554 p = 0.2 p = 0.2

 r r r r 0.0 0.0 0.0016 0.0 0.0
 r r r n, n r r r 0.0 0.0 0.0064 0.0 0.0

 r r n r, r n r r 0.0027 0.0 0.0064 0.422 0.0
 r r n n. n n r r 0.0027 0.0 0.0256 0.106 0.0
 r n r n, n r n r 0.1196 0.05 0.0256 4.672 1.953
 r n n r 0.0054 0.05 0.0256 0.212 1.953
 n r r n 0.0054 0.0 0.0256 0.212 0.0
 n n n r. r n n n 0.1223 0.1 0.1024 1.194 0.977
 n n r n. n r n n 0.125 0.15 0.1024 1.221 1.465
 n n n n 0.2446 0.35 0.4096 0.597 0.854

 TABLE 11.2. Probabilities of recombination (r) and non-recombination (n) in four equal marker

 intervas. under interference modeLs I and II ancd under the Haaane model of no interference
 (model 6)

 The acceptance probability is then a = min(1, h(St; S). This considerable reduction
 in the expression for h(St; S), and consequent ease of computation of the acceptance
 probability relies on three facts:

 (1) the probability of data Y given meiosis pattern S or St does not depend on the
 interference process (I) or (H), giving rise to S,
 (2) the independence of meiosis patterns Sk,. at different meioses k (when not
 conditioned on data Y), and

 (3)St,. Sk,. for k 4 i.
 As an example, consider again the standard test pedigree (Figure 1.1): this

 example was also given in Thompson (2000a). As in section 10.4, consider
 five equispaced marker loci, 25.54cM apart (recombination frequency 20% under
 the Haldane no-interference model). We consider the case of extreme position
 interference, but no chromatid interference, in which chiasmata on the underlying

 tetrad are equispaced at 50cM spacing. Then using the notation of section 5.3
 for the indicator vectors C of presence (1) or absence (0) of chiasmata in the

 four intervals there are only 5 possible values: C = (1,0,1,1), (1,1,0,1), (0,1,1,0),
 (1,0,1,0) or (0,1,0,1). Under a model which places the first marker uniformly in
 an interval between two chiasmata, these five possible chiasmata indicator vectors

 have probabilities 0.0216, 0.0216, 0.0216, 0.4676 and 0.4676 respectively. Using
 equation (5.2), these translate to the probabilities of patterns of recombination (r)
 or non-recombination (n) given in under model (I) in Table 11.2. In this table, pairs

 of vectors having the same probability under any model are listed together. For
 example, for equispaced markers, patterns rrrn and nrrr have the same probability,
 by symmetry. The tabulated probability refers to the probability of each of the two
 patterns. We see there are substantial differences in the probabilities under this
 interference model (I) and under no interference (model 0; Haldane), However,
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 the ratios are not so extreme as to make the MCMC ineffective. All probabilities
 are strictly positive under the proposal (Haldane) distribution, and non-zero ratios
 differ by a factor of at most 22 (0.212 to 4.672).

 It is not clear that the correct assessment of interference effects should be through
 imposing equal genetic distance; that is, total expected numbers of crossovers. If

 instead we constrain the recombination frequency between adjacent markers to
 be 20%, the distance under our model of complete position interference is 20cM.
 Again there are five possible indicator vectors C of chiasmata presence/absence,
 but this time these are (0,0,1,0), (01,0,0). (0.1.01). (10.0.1). and (1,0,1,0),
 each having probability 0.2. Since chiasmata have an exact 50cM spacing and the
 marker intervals are 20cM, it is not longer possible for there to be chiasmata in two

 adjacent intervals. Again assuming the first marker is randomly and uniformly
 placed relative to the chiasmata, and using equation (5.2), the corresponding
 probabilities of patterns of recombination/non-recombination are as given for model
 (II) in Table 11.2. Again the ratios, for model (II) relative to the proposal (Haldane)
 model are not extreme; this time the non-zero ratios range only from 0.854 tO
 1.953. Although both models (I) and (II) have some recombination vector events of
 probability 0, this does not lead to invalid estimates. If proposed, these vectors will
 not be accepted. The total probability under the Haldane model of recombination

 vectors that cannot be accepted under the interference models is not large (0.014
 under model I, 0.104 under model II).

 Gene ibd single- single- no interference
 pattern locus locus marker marker

 prior conditional M5 M3

 All 4 genes ibd genes 29 133 127 180
 3 of 4 genes ibd 156 286 356 381
 2 pairs of Zbd genes 84 154 118 130
 2 of 4 genes ibd 484 354 303 251
 all 4 non-ibd 247 73 96 58
 mean log-probability log Po (S)) -44.69
 mean log-probability log Po (YIS) -33.23
 MCMC steps (accepted %c) 107(i00c)

 TABLE 11.3. Gene ibci probabilities (x 1000) for single foci, and under no interference (Haciane
 model)

 The marker data at each locus assumed are as in sections 10.4 and 10.6 for the
 five individuals of the pedigree with marker phenotypes observed (Figure 10.3).
 The allele frequerfcies are again assumed to be 0.2, 0.2, 0.4, and 0.2 for the four
 alleles at each locus. Again, sampling latent meiosis indicators S conditional on the
 marker data, we score gene ibd probabilities among the four potentially distinct C
 alleles. In Table 11.3 are shown the gene ibd probabilities for single loci, and for
 linked markers under the Haldane model of no interference for the central marker
 M3 and an end marker M5. These are the same values seen for marker loci in
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 11.2. INTERFERENCE BY METROPOLIS-HASTINGS 153

 Gene ibd Model I Model II

 pattern marker marker marker marker
 M5 M3 M5 M3

 All 4 genes ibd 74 104 101 152

 3 of 4 genes ibd 305 339 334 370
 2 pairs of ibd genes 94 114 106 126

 2 of 4 genes ibd 349 321 327 276

 all 4 non-ibd 178 122 132 76

 mean log-probability loge Po (S) -50.74 -45.23
 mean log-probability loge Po(YIS) -34.12 -33.58
 MCMC steps (accepted %) 107(68.6%) 107(80.4%)

 TABLE 11.4. Gene ibd probabilities (x1000) under the recombination pattern probabilities given
 for interference models (I) and (II) in Table 11.2. Each run consisted of 10,000,000 whole-meiosis
 Gibbs/Metropolis updates, and took about 1 hour CPU on a DEC Alpha 400-233 work-station
 with 256MB memory

 Table 10.3 in the case of a trait locus unlinked to the markers: they are shown

 again here for easier reference in the context of interference effects. The prior is
 the probability given by the pedigree alone, without marker data. The conditional

 is the probability when the marker phenotypes are assumed for a single locus. The
 table shows that the data increase probability of gene ibd not surprisingly since
 the four genes scored are of the same allelic type. Having data at five linked markers
 reinforces the inference of gene ibd, particularly for the marker M3 in the center
 of the map. Note that the marker spacing is 25.54cM, so that the five loci extend
 over 1 Morgan. In every meiosis of the pedigree there is a probability 0.5904 of at
 least one recombination among these five markers. Even so, the concordant data
 at these linked markers reinforces probabilities of gene ibd.

 The results of 107 MCMC meiosis resamples are given in Table 11.4. We see
 a substantial effect of interference on the conditional probabilities of gene ibd.
 In particular, probabilities that all four C alleles are ibd are reduced, and that
 all are distinct are increased. The percentage of MCMC proposals accepted and
 the expected base-e complete-data log-likelihoods both provide an indication of
 the effect of interference. In comparison to the non-interference case, matching
 recombination frequencies (model (II)) provides closer results than does matching
 genetic distances (model (I)).

 The interference models considered in this section are extreme, assuming
 complete position interference, although no chromatid interference. Other less
 extreme examples still show substantial impact on genome sharing among relatives
 at distances of 20 to 30cM. For example, Browning and Thompson (1999) considered
 the aunt-niece-sibs example of section 4.5, using a chi-square model with parameter
 m = 2 for the interference process (example (4) of section 5.7). Although the
 impact of interference on genetic inferences remains a little studied area, the results
 here suggest that further study is warranted. Although interference will have
 little impact on mapping Mendelian traits when markers are highly informative,
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 it will affect the resolution of genes contributing to quantitative traits or to disease

 liability. Its impact will also be greater in using tightly linked but less informative

 markers, such as Single Nucleotide Polymorphisms (SNPs): see section 1.1. For

 such markers, haplotypes cannot be readily inferred, even with data on pedigrees,
 and interference will affect the imputation probabilities for such haplotypes.

 11.3 Inference of typing or pedigree error

 Throughout this monograph, we have focused on the case where the pedigree
 relationship among individuals is known, and often where the marker map and

 other parameters of the model for the marker data are assumed known without

 error. We have also not explicitly considered the possibility of errors in marker

 genotypes. However, as noted in section 1.4, the probability of data under a known

 genetic model is a likelihood for the pedigree relationships among the individuals.
 Also, on an assumed pedigree it is clearly possible to address other aspects of the
 model for the data, including possible typing errors. In analyses of real data,

 errors, uncertainty, or heterogeneity in the marker model often arise and may
 have an impact on inference. Traditionally, the approach has been to correct for

 errors in advance of other analyses, usually on a marker-by-marker basis. This
 can be unsatisfactory (Broman, 1999), and with greater automation of marker
 genotyping it becomes important to have methods of analyzing multilocus marker

 data, and allowing within the analysis for possible errors in typing or specification

 of individual relationships.

 For inference of possible data error, the general method is simply one of

 generalizing the model for the relationship between underlying latent variables S.j,
 or genotypes G.,j at locus j, and the observable data Y.,j on the individuals. The
 likelihood is most easily considered as in equation (3.9) or (6.1):

 Pr(Y) = : Pr(S, Y) = Pr(Y I S) Pr(S)
 s s

 (11.2) = S Pr(S..i) fj Pr(S.,j I S.,j-,) L]JPr(Y.,j I S.,j)
 S j=2 j -_1

 The dependence structure (Figure 6.1), and hence general Baum-algorithm

 computational approach (section 6.1) remain unchanged. The generalization is

 only in Pr(Y.,j I S.,j) for each locus j. It may be easier to consider likelihood
 computation with an additional layer of latent variable the true genotypes
 determined by the underlying pattern of gene ibd (Kumm et al., 1999):

 (11.3) Pr(Y.,j I S.,J) = E Pr(Y.,j I G.,j)Pr(G.,j I S.,j).
 G.,j

 Assuming typing errors are individual-specific

 Pr(Y.,j I G.,j) = fjPr(Yi,jI Gj,j)
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 11.3. INFERENGE OF TYPING OR PEDIGREE ERROR 155

 a product over individuals i. Nonetheless, computation of (11.3) and hence the

 likelihood (11.2) can become computationally intensive for general error models

 and more than a very few individuals. In principle, the likelihood (11.2) can be

 used to estimate the form and the parameters of the error model. More practically,

 the reverse Baum algorithm (section 7.1) can be used to to determine the loci

 at which there is a high probability of error given all the observed data: that is,

 Pr(Gi,j 5 Yi,j I Y) is large.
 Under a given penetrance model, the likelihood of alternative relationships can

 be compared. Boehnke and Cox (1997) used the Baum algorithm to compute

 likelihoods for alternative sib and half-sib relationships from multilocus marker

 data. Browning (1999) extended this to a variety of extended-family relationships,
 up to second cousins. On larger pedigrees, in principle at least, MCMC may be

 used to obtain a Monte Carlo likelihood ratio. Since the likelihood is given by

 equation (11.2), we have the likelihood ratio equation (9.1) which, in the present
 context becomes

 P1 (Y) - E (P2 (Y, S) Y
 PNY) P1 (Y. S) Y

 where the subscripts on probabilities and expectations designate two alternative

 relationship hypotheses. Any of the MCMC samplers of earlier sections can be

 used to sample from

 P1 (Y. S)
 Pi (S I Y) P(oY) cX P1(Y I S)Pi(S).

 Care is needed in implementing these likelihood ratio estimators, since different
 relationships may imply a different number of relevant meioses. Unlike in the

 comparison of different genetic models, the penetrance probabilities P1 (Y I S) may
 depend on the hypothesized relationship. Nonetheless, we must consider MCMC

 sampling of S not of ibd patterns J(S), although the latter are more readily
 compared for alternative relationships. In the assumed absence of interference,
 the segregation process S is Markov along the chromosome, but the agglomerated
 process J(S) is not (section 4.8).

 In any give meiosis, there are relatively few changes in Sij as j changes. As the
 number of linked marker loci becomes very large and they are thus tightly linked,
 it becomes inefficient to use the complete set of components of S as the latent

 variables, and also difficult to get effective samplers on this space. Instead, one may

 consider a set of latent processes Si (z) where z is the position on the chromosome
 measured in terms of genetic distance. This framework was first developed

 by Donnelly (1983), and used by Bickeboller and Thompson (1996a; 1996b) to
 study the descent of genome in small pedigrees. Browning (1998) used the same

 underlying model to develop importance-sampling methods of estimating Monte

 Carlo likelihoods for alternative pedigree relationships. Browning (1999) extended
 the approach to the development of Monte Carlo likelihood methods to distinguish

 between alternative models of meiosis and genetic interference, including the models

 discussed in sections 5.6 and 5.7.
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 11.4 Other Monte-Carlo procedures for linkage

 analysis

 Another broad area of linkage analysis not addressed in this monograph is the

 mapping of loci contributing to quantitative traits, or quantitative trait loci (QTL).
 For linkage designs in experimental organisms there are well developed methods for

 detecting, mapping, and resolving the QTL contributing to increasingly complex

 traits (Knott and Haley, 1992; Zeng, 1994; Long et al., 1995). Increasingly, on
 larger or more complex problems MCMC is used (Hoeschele, 1994; Sorensen et al.,

 1995; Satagopan et al., 1996). Heath (1997) developed methods of segregation
 and linkage analysis on extended pedigrees, for models involving multiple QTL

 contributing additively to a complex quantitative trait.

 There are two main differences between MCMC methods for QTL analysis and

 the methods developed in this monograph. First, a Bayesian approach (section 2.4)
 is normally taken. For complex models, with many nuisance parameters, a
 likelihood approach has limitations. The traditional likelihood approach has been

 to maximize over these parameters, obtaining a profile likelihood for the parameters

 of interest. However, a Bayesian approach which integrates or samples (in the case

 of Monte Carlo) over nuisance parameters may provide a better reflection of the true
 information regarding parameters of interest. Using MCMC, samples are realized
 from the posterior probability distributions of parameters. A disadvantage of a
 Bayesian approach is that there is no exact computational approach against which

 MCMC results can be compared. As seen in section 10.6, even our best MCMC
 samplers need tuning to produce accurate likelihood estimates. For a Bayesian

 posterior probability distribution for parameters of a complex model, there is no

 way to assess the accuracy of Monte Carlo results. There is also no standard

 interpretation of findings. Whereas there may not be unanimity regarding the
 exact meaning of a base-10 lod score of 3.5, say, there is no collective experience at

 all regarding, say, a finding of 97%c probability that at least two QTL contribute to
 a trait.

 A second major difference between the methods of this monograph and MCMC
 methods for QTL analysis also relates to the model complexity, but to its effect
 on the MCMC methods used. For a model such as that of Heath (1997) in which
 the number of QTL contributing to a trait can vary, the dimension of the model
 is not fixed. In sampling over the parameters of a varying number of QTL, the

 number of parameters sampled changes. Thus methods of reversible-jump MCMC
 (Green, 1995) must be used, to sample between models of varying dimension.

 11.5 Monte-Carlo likelihoods in population

 genetics

 One of the earliest uses of MCMC in genetic analysis was not on pedigrees, but
 on the evolutionary history of populations and species. Since data are normally

 observed in the present, forwards simulation of the evolutionary process is of limited
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 11.5. MONTE-CARLO LIKELIHOODS IN POPULATION GENETICS 157

 use in developing Monte Carlo inference procedures. Just as on a pedigree, effective
 realizations must be conditioned on the data. Kingman (1982) developed the theory
 of the coalescent, which allows for study of the ancestry of a current sample from
 a population. Kuhner et al. (1995) developed Monte Carlo likelihood methods
 for estimating evolutionary parameters, based on MCMC resampling of coalescent
 ancestries of the current population sample. Griffiths and Tavare (1994b; 1994a)
 also developed a Monte Carlo likelihood approach to similar problems. Their
 approach uses importance sampling (section 7.3) rather than MCMC, and they
 realize successive events in the ancestry of a current sample. Stephens and
 Donnelly (2000) have given a recent synthesis, discussion, and extension of these
 two approaches.

 More recently, Monte Carlo likelihood approaches have been used in a wide
 variety of population-genetic areas. One of these is the development of Monte Carlo

 likelihood methods for fine-scale mapping. Due to the limited number of meioses,
 the resolution of loci from pedigree data is no finer than about 1 cM (Boehnke,
 1994). As described briefly in section 4.6, allelic associations resulting from slow
 decay of initial linkage disequilibrium between a new mutation and a tightly linked
 marker locus can provide evidence for linkage and for precise localization of a disease
 locus. This has been a recent focus of several successful mappings of loci with
 rare recessive disease alleles (Cox et al., 1989; Hastbacka et al., 1992; Goddard
 et al., 1996). The current marker haplotypes of chromosomes carrying disease
 alleles are the outcome of their patterns of shared ancestry, and recombination
 events occurring in the meioses of that ancestry.

 The first attempt at Monte Carlo likelihood analysis for this problem (Kaplan
 et al., 1995) used forwards simulation of the population, but suffered again from the
 disadvantage of being unable to condition effectively on current data. The methods
 of Rannala and Slatkin (1998) and Graham and Thompson (1998) use Monte Carlo
 realization of the coalescent ancestry of the disease sample as the basic tool in
 obtaining a Monte Carlo likelihood for fine-scale localization of a rare allele. Note
 that the ancestry of a sample ascertained for a rare allele is quite different from
 that of a random sample from the population. There is a very strong ascertainment
 effect: Griffiths and Tavare (1998) provide applicable results.

 In the case of Graham and Thompson (1998), recombinations relative to the
 putative disease locus are then realized on the ancestry, and exact computational
 methods used to compute the likelihood contribution of a given recombination
 history. For a single marker at recombination frequency p to the disease locus

 (11.4) L(p) Pq,p, r (Y) E Pq(Y I X)Pp, n(X)
 x

 where X denotes the latent variables of coalescent ancestry at the disease locus, and
 recombination events between disease locus and marker occurring in the meioses
 of that ancestry. The nuisance parameters are marker allele frequencies q which
 enter only into the penetrance probability Pq(Y I X), and H the parameters of
 the demographic history of the population. Note the similarity of equation (11.4)
 to those of likelihoods on pedigrees, for example equations (1.5), (3.9), or (7.8).
 However, unlike the Monte Carlo likelihoods based on those equations, here
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 Pq(Y I X) is computed exactly, while the latent variables X are realized from their
 distribution under the given population model and hypothesized recombination

 frequency p. Thus a direct Monte Carlo estimate of the likelihood (11.4) is obtained.

 Between the time-scale of evolution and coalescent ancestry and that of meioses

 in a defined pedigree, are the population-genetic models that provide probability

 distributions for the change of allele frequencies over generations, due to migration,
 population admixture, and random genetic drift. Here also, Monte Carlo methods

 of likelihood computation may be applied, the data Y being allele sample counts
 for different alleles, at different generations, and the latent variables X being the

 underlying true allele counts. Parameters of interest are those that determine

 the rate of change of allele frequencies, including the effective population size.
 Estimation of effective population size is of interest in the assessment of endangered

 populations. The dependence structure is identical to that of Figure 6.1. Instead

 of first-order Markov dependence of meioses at loci along a chromosome, we have
 first-order Markov generation-to-generation transitions of allele frequencies. The

 samples Yj taken at a given generation j depend only on the allele frequencies
 Xj at that time. Equation (6.1) gives the form of the likelihood. Anderson and
 Thompson (1999) have used MCMC to obtain Monte Carlo likelihoods for the

 problem of estimating effective population size.

 At every level, genetics provides examples of clearly defined highly structured
 probability models. The latent variables of genetics are "real": meioses, genotypes,

 recombination events, allele counts, and ancestral history. Monte Carlo methods

 are well suited to these problems, and often exact computation of likelihoods and
 probability distributions is infeasible. This final chapter has described a number of

 areas in which these methods are being applied, beyond those of linkage analysis
 from pedigree data which has been the focus of earlier chapters. These are only a

 few current examples; doubtless others will follow.
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