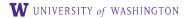
Statistical methods and considerations for genome-wide association testing

Seth D. Temple Sharon R. Browning Timothy A. Thornton

> BIOST 550 Seattle, WA, USA June 3, 2022



Agenda

1. Review

- 1.1 Tests on contingency tables
- 1.2 Asymptotically χ^2 statistics
- 1.3 Linear modeling
- 1.4 Multiple testing
- 2. Genome-wide association studies (GWAS)
 - 2.1 Binary response
 - 2.2 Quantitative response
 - 2.3 Fixed effects
 - 2.4 Random effects
 - 2.4.1 Heritability
 - 2.5 Fine mapping
- 3. Genetic epidemiology
 - 3.1 Linkage mapping
 - 3.2 IBD mapping
 - 3.3 Admixture mapping
 - 3.4 TWAS

Allelic, genotypic tests for case/control data

Principle: bin counts in a contingency table follow some multinomial distr.

- Allelic tests
 - No close relatives
 - HWE assumed
 - ► One degree of freedom → more power
 - Pearson χ^2 statistic; LRT; exact test; normal approx.
 - PLINK option -assoc
- Genotypic tests
 - No close relatives
 - HWE not assumed
 - Two degrees of freedom \rightarrow less power
 - Pearson χ^2 statistic; LRT; exact test; trend test
 - PLINK option -model

Asymptotically χ^2 statistics

- Pearson χ^2 statistic
 - Contigency table data
 - $\sum_{\text{types}} (O E)^2 / E$ for O observed, E expected counts
 - (r-1)(c-1) df where r, c are row, column size
- Likelihood ratio test statistic
 - $-2*(\ell(\hat{\theta}_0) \ell(\hat{\theta}))$ where ℓ is log-likelihood, $\hat{\theta}_0$ is MLE under null, $\hat{\theta}$ is unconstrained MLE
 - $d d_0$ df where $d_0(d)$ are size of (un)constrained space
- Score test statistic
 - $S(\hat{\theta}_0)^T \mathcal{I}(\hat{\theta}_0)^{-1} S(\hat{\theta}_0)$ where *S* is score (derivative of ℓ), \mathcal{I} is information matrix
 - $\hat{\theta}_0$ available; $\hat{\theta}$ not available
- Wald test statistic
 - $\mathcal{I}(\theta_0)^{1/2}(\hat{\theta} \theta_0)$ normally distributed
 - $(\hat{\theta} \theta_0)^{\dagger} \mathcal{I}(\theta_0)(\hat{\theta} \theta_0) \chi^2$ distributed

Geometry of χ^2 test statistics

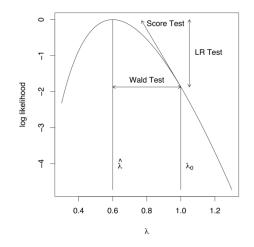


Figure: Geometric interpretation from (Wakefield, 2013)

Linear modeling

Notation

- Y is trait
- X₁ is covariate of interest (0/1 or 0/1/2 valued)
- *X*₂,... are other covariates (age, sex, etc.)
- ε is error term
- $g(\cdot)$ is link function (identity, log odds)

Model

$$g(Y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \varepsilon$$
$$g(\mathbb{E}[Y]) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots$$

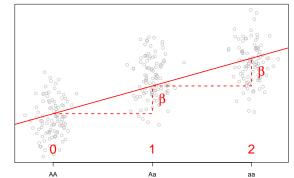
Hypothesis testing

- $H_0: \beta_1 = 0$ versus $H_1: \beta_1 \neq 0$
- Wald, score, or LR test

Linear regression with SNPs

Many analyses fit the 'additive model'

 $y = \beta_0 + \beta \times \#$ minor alleles

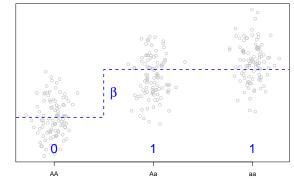


<ロ><一><一><一><一><一><一><一</td>12/29

Linear regression, with SNPs

An alternative is the 'dominant model';

$$y = \beta_0 + \beta \times (G \neq AA)$$

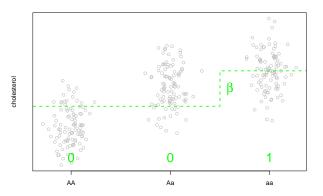


나▶ ◀륨▶ ◀불▶ ◀불▶ 불 ∽੧< 13/29

Linear regression, with SNPs

or the 'recessive model';

$$y = \beta_0 + \beta \times (G == aa)$$

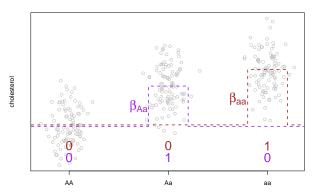


□▶ ◀ @ ▶ ◀ 볼 ▶ ◀ 볼 ▶ 월 ∽ Q (~ 14 / 29

Linear regression, with SNPs

Finally, the 'two degrees of freedom model';

$$y = eta_0 + eta_{Aa} imes ({ extsf{G}} == { extsf{Aa}}) + eta_{ extsf{aa}} imes ({ extsf{G}} == { extsf{aa}})$$



Family-wise error rate (FWER): prob. making 1 or more false positives

Problem: **control FWER** at level α Solution:

Bonferroni method: $\alpha_0 = \alpha/$ (# independent tests) α_0 is level for each marginal test

Challenge:

Hypothesis tests in genetics are correlated.

In GWAS, how many **independent tests** are conducted?

In admixture (IBD) mapping, how many independent tests?

Agenda

1. Review

- 1.1 Tests on contingency tables
- 1.2 Asymptotically χ^2 statistics
- 1.3 Linear modeling
- 1.4 Multiple testing

2. Genome-wide association studies (GWAS)

- 2.1 Binary response
- 2.2 Quantitative response
- 2.3 Fixed effects
- 2.4 Random effects
 - 2.4.1 Heritability
- 2.5 Fine mapping
- 3. Genetic epidemiology
 - 3.1 Linkage mapping
 - 3.2 IBD mapping
 - 3.3 Admixture mapping
 - 3.4 TWAS

Genome-wide association study

- 1. Data collection
- 2. Genotyping, quality control
- 3. Imputation (phasing)
- 4. Association testing
 - Some χ^2 test for $\beta_1 \neq 0$ in linear model
- 5. Meta analysis, replication studies
- 6. Follow-up analyses
 - Laboratory experiments
 - Mendelian randomization
 - and so much more ...

More details in Tam et al. (2019) and Uffelman et al. (2021).

GWAS: binary response

Model

$$g(Y) = \beta_0 + \beta_1 X_1 + \varepsilon$$

$$g(\mathbb{E}[Y]) = \beta_0 + \beta_1 X_1$$

$$Var(\varepsilon) = \sigma_e^2 I_n$$

$$g(p) = \log(p/(1-p)) \quad \text{(logit link)}$$

Hypothesis testing

$$H_0: \beta_1 = 0$$
 versus $H_1: \beta_1 \neq 0$

Interpretation

$$\mathbb{E}[Y] = (1 - \exp(-(\beta_0 + \beta_1 X_1)))^{-1}$$

 β_1 models odds ratio $\mathbb{E}[Y|X_1 = 1]$ versus $\mathbb{E}[Y|X_1 = 0]$

GWAS: quantitative response

Model

$$g(Y) = \beta_0 + \beta_1 X_1 + \varepsilon$$
$$g(\mathbb{E}[Y]) = \beta_0 + \beta_1 X_1$$
$$Var(\varepsilon) = \sigma_e^2 I_n$$
$$g(y) = y \quad \text{(identity link)}$$

Hypothesis testing

 $H_0: \beta_1 = 0$ versus $H_1: \beta_1 \neq 0$

Interpretation

 β_1 models difference $\mathbb{E}[Y|X_1 = 1] - \mathbb{E}[Y|X_1 = 0]$

GWAS: fixed effects

Fixed effects

- Matrix X_{2:p} contains covariates
- E.g., sex, age, batch, self-identified race?!?
- PCs for global ancestry
- Known causal genotype (e.g., APOE for AD)

Model

$$g(Y) = \beta_0 + \beta_1 X_1 + \beta_{2:p} X_{2:p} + \varepsilon$$
$$g(\mathbb{E}[Y]) = \beta_0 + \beta_1 X_1 + \beta_{2:p} X_{2:p}$$
$$Var(\varepsilon) = \sigma_e^2 I_n$$

Interpretation

Mean model conditional on covariates, namely $\mathbb{E}[Y|X_{0:p}]$

GWAS: random effects

Random effects

- $\alpha \sim N(0, \sigma_g^2 \Psi)$, where σ_g^2 is phenotypic variance attributable to additive genetic effects
- Ψ = standardized kinship matrix or genetic relatedness matrix (GRM)
- Phenotypic variance = $\sigma_g^2 + \sigma_e^2$
- Heritability $h^2 = \sigma_g^2 / (\sigma_g^2 + \sigma_e^2)$
- Indicator matrix Z

Model

$$g(Y) = \beta_0 + \beta_1 X_1 + \beta_{2:p} X_{2:p} + \alpha Z + \varepsilon$$
$$g(\mathbb{E}[Y]) = \beta_0 + \beta_1 X_1 + \beta_{2:p} X_{2:p}$$
$$Var(\varepsilon) = \sigma_e^2 I_n$$

Heritability estimation

(Narrow-sense) heritability $h^2 = \sigma_g^2/(\sigma_g^2 + \sigma_e^2)$

- _g for (additive) genetic
- _e for environment (or error)
- Impacts **power** to detect causal effects in GWAS !
- See Min, Thompson, and Basu (2021)
 - Definition of GRM and LD matrices
 - Details on estimators
- See Gogarten et al. (GENESIS; 2019)
 - Sparse GRM for efficient matrix inversion
 - Matrix inversion can be $O(n^3)$

Fine mapping

Goal: find small set of variants that explain association signal

Challenge: variants are in LD

- Frequentist
 - Perform cond. assoc. analyses on lead variant(s)
 - Forward stepwise selection (link)
- Bayesian
 - Credible set of variants that explain $100(1 \alpha)$ % of signal
 - Based on posteriors or Bayes factors (link)
 - Priors can consider additional info: imputation accuracy, MAF, etc.

Trans-ethnic and admixed populations can refine location if causal variants are shared.

Agenda

- 1. Review
 - 1.1 Tests on contingency tables
 - 1.2 Asymptotically χ^2 statistics
 - 1.3 Linear modeling
 - 1.4 Multiple testing
- 2. Genome-wide association studies (GWAS)
 - 2.1 Binary response
 - 2.2 Quantitative response
 - 2.3 Fixed effects
 - 2.4 Random effects
 - 2.4.1 Heritability
 - 2.5 Fine mapping

3. Genetic epidemiology

- 3.1 Linkage mapping
- 3.2 IBD mapping
- 3.3 Admixture mapping
- 3.4 TWAS

GWAS variants

d GWAS variants

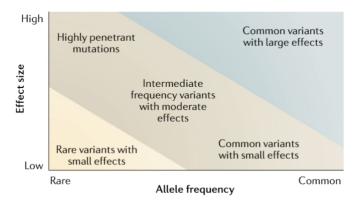


Figure: Variant types in between the two diagonals are found in GWAS (Tam et al., 2019)

Linkage mapping

Focus of lectures in weeks 6 and 7

- Test if marker is linked to trait
 - Mendelian trait acts like causal locus
- Powerful for rare familial diseases
- Requires pedigrees
 - Hard to ascertain large samples
 - Computationally intensive
- Find general location of causal variant
 - About 10 cM regions

IBD mapping

Test if cases share more IBD segments around causal variant.

- Compare to nonparametric linkage analysis
- Powerful for multiple rare vars. of moderate effect size
 - Middle ground between GWAS and linkage mapping
- Does not require pedigrees \rightarrow bigger sample size
- Find general location of causal variant(s)
- Amenable to mixed effects model
- See Browning and Thompson (2012)

Admixture mapping

Test if local ancestry associates with trait.

- Compare to IBD mapping
- Follow-up study to GWAS for complex traits
 - Find signals for variants not genotyped, imputed
 - Characterize disease etiology + demography
- Must ascertain admixed sample \rightarrow smaller sample size
- Find general location of causal variant(s)
- Amenable to mixed effects model
- See "Overview of Admixture Mapping" (Shriner, 2017)

Transcriptome-wide association study (TWAS)

Test if predicted gene expression associates with trait.

- Complementary/supplementary to GWAS
 - Gene-based \rightarrow lower multiple testing burden
 - Interpretable transcription hypotheses
 - Relates complex traits to regulation
- Depends on prediction model from GTEx project (link)
 - Which may be a black box ...
- Results may be tissue-specific
- Be cautious making causal claims !
- See references (link, link)

Polygenic risk score (PRS)

It's just a linear model (IJALM) ! Twitter thread

Based on summary statistics from GWAS

- Tested SNPs, locations
- Effect sizes and standard errors
- Test statistics and *p*-values
- Minor allele frequencies
- Sample size

Report the above! Make it publicly available if possible! GWAS catalog

GWAS: pros and cons

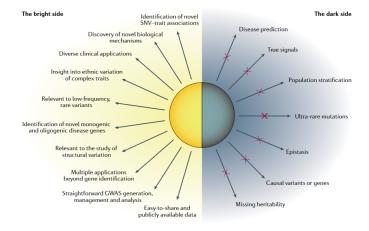


Figure: Pros and cons of GWAS (Tam et al., 2019)

GWAS: the iceberg

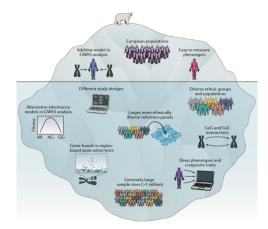


Figure: GWAS performed to date represent the tip of the iceberg (Tam et al., 2019)