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Allelic, genotypic tests for case/control data

Principle: bin counts in a contingency table follow some
multinomial distr.

• Allelic tests
▶ No close relatives
▶ HWE assumed
▶ One degree of freedom→more power
▶ Pearson χ2 statistic; LRT; exact test; normal approx.
▶ PLINK option –assoc

• Genotypic tests
▶ No close relatives
▶ HWE not assumed
▶ Two degrees of freedom→ less power
▶ Pearson χ2 statistic; LRT; exact test; trend test
▶ PLINK option –model

3



Asymptotically χ2 statistics

• Pearson χ2 statistic
▶ Contigency table data
▶

∑
types(O − E )2/E for O observed, E expected counts

▶ (r − 1)(c − 1) df where r , c are row, column size
• Likelihood ratio test statistic

▶ −2 ∗ (ℓ(θ̂0)− ℓ(θ̂)) where ℓ is log-likelihood,
θ̂0 is MLE under null, θ̂ is unconstrained MLE

▶ d − d0 df where d0(d) are size of (un)constrained space
• Score test statistic

▶ S(θ̂0)
TI(θ̂0)

−1S(θ̂0) where S is score (derivative of ℓ),
I is information matrix

▶ θ̂0 available; θ̂ not available
• Wald test statistic

▶ I(θ0)
1/2(θ̂ − θ0) normally distributed

▶ (θ̂ − θ0)
TI(θ0)(θ̂ − θ0) χ

2 distributed
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Geometry of χ2 test statistics

Figure: Geometric interpretation from (Wakefield, 2013)
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Linear modeling

Notation
• Y is trait
• X1 is covariate of interest (0/1 or 0/1/2 valued)
• X2, . . . are other covariates (age, sex, etc.)
• ε is error term
• g(·) is link function (identity, log odds)

Model

g(Y ) = β0 + β1X1 + β2X2 + · · ·+ ε

g(E[Y ]) = β0 + β1X1 + β2X2 + . . .

Hypothesis testing
• H0 : β1 = 0 versus H1 : β1 ̸= 0
• Wald, score, or LR test
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Statistical Genetics I Lecture 19 Genetic Association Testing with Quantitative Traits

Linear regression with SNPs
Many analyses fit the ‘additive model’

y = β0 + β ×#minor alleles
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Statistical Genetics I Lecture 19 Genetic Association Testing with Quantitative Traits

Linear regression, with SNPs
An alternative is the ‘dominant model’;

y = β0 + β × (G 6= AA)
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Statistical Genetics I Lecture 19 Genetic Association Testing with Quantitative Traits

Linear regression, with SNPs
or the ‘recessive model’;

y = β0 + β × (G == aa)
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Statistical Genetics I Lecture 19 Genetic Association Testing with Quantitative Traits

Linear regression, with SNPs
Finally, the ‘two degrees of freedom model’;

y = β0 + βAa × (G == Aa) + βaa × (G == aa)
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Multiple testing

Family-wise error rate (FWER):
prob. making 1 or more false positives

Problem: control FWER at level α
Solution:
Bonferroni method: α0 = α/ (# independent tests)
α0 is level for each marginal test

Challenge:
Hypothesis tests in genetics are correlated.
In GWAS, how many independent tests are conducted?
In admixture (IBD) mapping, how many independent tests?
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Genome-wide association study

1. Data collection
2. Genotyping, quality control
3. Imputation (phasing)
4. Association testing

▶ Some χ2 test for β1 ̸= 0 in linear model
5. Meta analysis, replication studies
6. Follow-up analyses

▶ Laboratory experiments
▶ Mendelian randomization
▶ and so much more ...

More details in Tam et al. (2019) and Uffelman et al. (2021).
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GWAS: binary response

Model

g(Y ) = β0 + β1X1 + ε

g(E[Y ]) = β0 + β1X1

Var(ε) = σ2
e In

g(p) = log(p/(1 − p)) (logit link)

Hypothesis testing
H0 : β1 = 0 versus H1 : β1 ̸= 0

Interpretation

E[Y ] = (1 − exp(−(β0 + β1X1)))
−1

β1 models odds ratio E[Y |X1 = 1] versus E[Y |X1 = 0]
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GWAS: quantitative response

Model

g(Y ) = β0 + β1X1 + ε

g(E[Y ]) = β0 + β1X1

Var(ε) = σ2
e In

g(y) = y (identity link)

Hypothesis testing
H0 : β1 = 0 versus H1 : β1 ̸= 0

Interpretation
β1 models difference E[Y |X1 = 1]− E[Y |X1 = 0]
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GWAS: fixed effects

Fixed effects
• Matrix X2:p contains covariates
• E.g., sex, age, batch, self-identified race?!?
• PCs for global ancestry
• Known causal genotype (e.g., APOE for AD)

Model

g(Y ) = β0 + β1X1 + β2:pX2:p + ε

g(E[Y ]) = β0 + β1X1 + β2:pX2:p

Var(ε) = σ2
e In

Interpretation
Mean model conditional on covariates, namely E[Y |X0:p]
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GWAS: random effects

Random effects
• α ∼ N(0, σ2

gΨ), where σ2
g is phenotypic variance

attributable to additive genetic effects
• Ψ = standardized kinship matrix

or genetic relatedness matrix (GRM)
• Phenotypic variance = σ2

g + σ2
e

• Heritability h2 = σ2
g/(σ

2
g + σ2

e )
• Indicator matrix Z

Model
g(Y ) = β0 + β1X1 + β2:pX2:p +αZ + ε

g(E[Y ]) = β0 + β1X1 + β2:pX2:p

Var(ε) = σ2
e In
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Heritability estimation

(Narrow-sense) heritability h2 = σ2
g/(σ

2
g + σ2

e )

• g for (additive) genetic
• e for environment (or error)
• Impacts power to detect causal effects in GWAS !

• See Min, Thompson, and Basu (2021)
▶ Definition of GRM and LD matrices
▶ Details on estimators

• See Gogarten et al. (GENESIS; 2019)
▶ Sparse GRM for efficient matrix inversion
▶ Matrix inversion can be O(n3)
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Fine mapping

Goal: find small set of variants that explain association signal

Challenge: variants are in LD

• Frequentist
▶ Perform cond. assoc. analyses on lead variant(s)
▶ Forward stepwise selection (link)

• Bayesian
▶ Credible set of variants that explain 100(1 − α)% of signal
▶ Based on posteriors or Bayes factors (link)
▶ Priors can consider additional info:

imputation accuracy, MAF, etc.

Trans-ethnic and admixed populations can refine location if
causal variants are shared.
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GWAS variants

Figure: Variant types in between the two diagonals are found in
GWAS (Tam et al., 2019)
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Linkage mapping

Focus of lectures in weeks 6 and 7

• Test if marker is linked to trait
▶ Mendelian trait acts like causal locus

• Powerful for rare familial diseases

• Requires pedigrees
▶ Hard to ascertain large samples
▶ Computationally intensive

• Find general location of causal variant
▶ About 10 cM regions
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IBD mapping

Test if cases share more IBD segments around causal variant.

• Compare to nonparametric linkage analysis

• Powerful formultiple rare vars. of moderate effect size
▶ Middle ground between GWAS and linkage mapping

• Does not require pedigrees→ bigger sample size

• Find general location of causal variant(s)

• Amenable to mixed effects model

• See Browning and Thompson (2012)
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Admixture mapping

Test if local ancestry associates with trait.

• Compare to IBD mapping

• Follow-up study to GWAS for complex traits
▶ Find signals for variants not genotyped, imputed
▶ Characterize disease etiology + demography

• Must ascertain admixed sample→ smaller sample size

• Find general location of causal variant(s)

• Amenable to mixed effects model

• See “Overview of Admixture Mapping” (Shriner, 2017)
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Transcriptome-wide association study (TWAS)

Test if predicted gene expression associates with trait.

• Complementary/supplementary to GWAS
▶ Gene-based→ lower multiple testing burden
▶ Interpretable transcription hypotheses
▶ Relates complex traits to regulation

• Depends on prediction model from GTEx project (link)
▶ Which may be a black box ...

• Results may be tissue-specific

• Be cautious making causal claims !

• See references (link, link)
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https://gtexportal.org/home/
https://www.frontiersin.org/articles/10.3389/fgene.2021.713230/full
https://www.nature.com/articles/s41588-019-0385-z


Polygenic risk score (PRS)

It’s just a linear model (IJALM) !
Twitter thread

Based on summary statistics from GWAS
• Tested SNPs, locations
• Effect sizes and standard errors
• Test statistics and p-values
• Minor allele frequencies
• Sample size

Report the above! Make it publicly available if possible!
GWAS catalog
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https://twitter.com/WomenInStat/status/1286420597505892352
https://www.ebi.ac.uk/gwas/


GWAS: pros and cons

Figure: Pros and cons of GWAS (Tam et al., 2019)
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GWAS: the iceberg

Figure: GWAS performed to date represent the tip of the iceberg
(Tam et al., 2019)
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