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Genetic drift

Gene pool for populations follows different random
trajectory after a population split, e.g. “Out of Africa”

e Some variants drift to 0 (loss) or 1 (fixation) frequency
e Some variants become private to a population

In general,

» Small population size — more drift
» Longer split time — more drift
» Migration back and forth — less drift

e Consequence: conclusions in one population may not be
portable to another population



Other considerations

From Oni-Orisan, et al. (2021), African populations have:
e Greatest genetic diversity
® Smallest LD blocks
e Largest number of population-specific alleles
® Lowest proportion of recent deleterious variants
® Most extensive population structure

Deepest historical lineage

Consequence: conclusions in one population may not be
portable to another population

Contribute to EC discussion to engage w/ this paper more.



Other considerations

Most indigenous populations have some admixture.
® Migration brings populations in contact.
e Exchange of genetic material.
e Allele frequencies depend on haplotype background.
® Ancestry switches occur along chromosomes.

Consequence:
® Many methods assume homogeneous population(s)
® Admixed sample is homogeneous in blocks



Equity in genetics research

Mean sample size
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Figure: Mean and median sample sizes for different GWAS in the
NHGRI GWAS catalog from 2005-2018.



Equity in genetics research

Problems:
e Some clinical results only benefit one population
e Some clinical tools (PRS, etc.) may be harmful to groups
e Some clinical phenotypes may differ among populations
(e.g., dementia in non-white populations)
e Some groups may provide evidence to further disease
etiology and our understanding of human genomes

Discussion: please share any additional problems you see with
regard to equity in clinical and genetics research.



Equity in genetics research

Resources:
e Journal club on diversity in genetics
e An array for multiethnic samples
® Embracing genetic diversity to improve Black health

® Malaspinas, Anna Sapfo, Michael C. Westaway, Craig
Muller, Vitor C. Sousa, Oscar Lao, Isabel Alves, Anders
Bergstrom, et al. 2016. “A Genomic History of Aboriginal
Australia.” Nature 538 (7624): 207-14.

Discussion: please share any additional resources you know.


http://courses.washington.edu/b581/Previous/Autumn2021.pdf
https://www.pagestudy.org/mega/
https://www.youtube.com/watch?v=Ez5JGybURsA
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Global ancestry

Global refers to ancestry composition of entire genome

e E.g., an African-American individual may have
70% West African ancestry and 30% European ancestry

® Here “ancestry” means similarity with ref. pop.

Motivation: linear modeling
* Model says E[g(y)] = Bo + Bixa + foxo + . ..
> Link g(-) is usually identity g(y) = y or log-odds
® Interpretation: g; is average effect of increment +1in x,
holding xa, ... fixed
» Include data xo, ... so as to give stronger evidence to
association signal between y and genetic marker x;



Genetic data on diverse samples

® Hard to identify population groups with a few loci,
even if population-specific allele frequencies are distinct

® Arrays contain thousands of genetic markers
e Sequences contain millions of genetic markers

¢ Use dimension reduction methods to cluster samples,
aggregating over small signals of population-specific
allele frequencies
» Largest signal is African versus non-African

» Second signal is Asian and American versus Europe
» Finer signals could be large inversion regions, relatives

» Caution: do not over-interpret your results



Principal component analysis

Goal: find an orthogonal (perpendicular) matrix U that
determines a change of variables Z = XU such that

e Columns of Z are ordered by increasing variability

® Columns of Z are uncorrelated

* (Normalized) Y% _; uj2,. = 1 for each column of U
Keep g much less than p of the U, Z columns

® Columns of U are loadings

e Columns of Z are PCs

Interpretation: loadings define direction of most variation
in a high dimensional (vector) space



Principal components analysis

Why does PCA make sense for genetic data analysis?

Genetic markers are correlated
Many genetic markers
Efficient matrix calculations

PCis linear combination of loadings,
so interpretation is possible

Promotes visual/graphical diagnostics

Interpretation:

Direction of most variation is African versus non-African

Direction of second most variation is Asian and American
versus European



PCA: Bryc, et al. (2010)

PCA of autosomal SNPs
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Figure: PC 1 by PC 2 for labeled Hispanic/Latino populations



PCA: Novembre, et al. (2008)

Figure: PCs 1 and 2 describe approximate NS and EW clines in
European populations



PCA: references

® James, G., D. Witten, T. Hastie, and R. Tibshirani. n.d. “An
Introduction to Statistical Learning.” Springer.

» Chapters 6and 10
e Lay, David C., Steven R. Lay, and Judi J. McDonald. 2016.
Linear Algebra and Its Applications. Pearson.
» Section 7.5

e Search for blogs (Towards Data Science) or StackExchange



Multidimensional scaling

This is a less popular alternative to PCA.

Given dissimilarity (distace) matrix D = (dj;), find
matrix Z such that
dj ~ ||zi — zjl|2

Keep g much less than p of the Z columns.

For classical MDS, = is =, so this is the same as PCA.
Can handle non-Euclidean distances.

PCA for R: example 1, example 2
Example R code for MDS


https://www.r-bloggers.com/2021/05/principal-component-analysis-pca-in-r/
https://bioconductor.org/packages/devel/bioc/vignettes/PCAtools/inst/doc/PCAtools.html
http://faculty.washington.edu/sguy/local_ancestry_pipeline/mds_rcode_pipeline.R

Matrix methods: recap

e PCs can summarize continental ancestries,
longitude versus latitude within continent

® PCs do not say an African-American individual is
70% West African ancestry and 30% European ancestry

e Use PCs in GWAS to adjusting for confounding
due to population structure
e Challenge: how many PCs do we use?

» Famously, the K problem
» How do we visualize more than 2 PCs?
» How do we interpret clusters?



Bayesian data analysis

Characterize uncertainty in parameter 6 using probability

e Assume data X comes from model My
e Assume 6 comes from prior «
» 7 may have “hyperparameters”

® Analogy: updating your initial beliefs with evidence
as you collect more data

Apply Bayes rule to get posterior for ¢
P(X10) x 7(6)
P(X)

x P(X|0) x 7(0)

P(01X) =

Sample from P(6|X) to report summaries (means, quantiles)



Bayesian data analysis

Ignore the normalizing constant P(X). For conjugate priors, we
observe that P(X|0)7(6) looks like model we are familiar with.

e Normal-normal
® Beta-binomial
e Multinomial-Dirichlet

Inference of § € RP for p > 2 may require sampling from
marginals of 6.

® Here the « is useful
® Search “Gibbs sampling”

20


https://en.wikipedia.org/wiki/Conjugate_prior

BDA: normal-normal conjugacy

X|0 ~ N(0,02)
0 ~ N(u2,3)

P(X|0) x 7(8)
- PX)

x P(X|0) x 7(0)

oc exp((X — 0)/(201)) x exp((0 — p12)?/(202))
x exp((0 — p)*/(20))

P(0]X) =

61X ~ N1, 0?)

21



BDA: Poisson-gamma conjugacy

X|6 ~ Poisson()
0 ~ Gamma(a, b)

P(X|0) x 7(6)
P(X)
x P(X|0)m(0)
_ exp(—0)6%¥ y b?02~1 exp(—bb)

P(0]X) =

X r(a)
o exp(—(b +1)9)p*+a"1

0)X ~ Gamma(X + a, b+ 1)

22



BDA: beta-binomial conjugacy

X|6 ~ Binomial(n; 6)
0 ~ Beta(a, b)

P(X|0) x (8)
P(X

P(OIX) = )
o P(X|0)m(0)

= <X>9X(1 —0)" % x

B(a, b)

o 0X+afl(1 _ g)anerfl

9|X ~ Beta(X +a,n— X + b)

1

9371(1 _ G)bf
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BDA: multinomial-Dirichlet conjugacy

(XI,X2,---an)|P17P2a-~-an'\‘ M(”?P17P2a--'apq)
(pl,pg, .. .,pq) ~ Dil’iCh|et(Oz1,042, e ,aq)
P(X
mw:(wfﬂ”
x P(X|‘9) (9)

mHﬂXHW“
i i=1
— H pX +al

(pl, P2, ..., pq)‘(Xl,Xz, ... 7Xq) ~ DirichIet(X1 + a1, Xo + ag,...
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BDA: recap

e Connect priors beliefs with empirical data
® Posterior means can be posed as convex combination of
sample mean and prior mean
» For example, the posterior mean in the beta-binomial case:

X+a a+b a n X

E[0|X] = = —
[1X] n+a-+b n+a+ba+b+n+a+bn

where a/(a + b) and X/n are prior and sample means.

e Pay attention to kernel (main part of density function),
and simplify with algebra

® For conjugate priors, we can efficiently sample with
well-known distributions

25



A population structure model

Notation

e X : matrix of genotypes of all individuals

e 7 : populations of individuals at each marker

» Consider K populations
Q : admixture proportions of individuals
F : population-specific allele frequencies per marker
X observed, Z unobserved, (F, Q) to be estimated
Assume loci are unlinked

Likelihood
L(F,Q) = P(X|F,Q)=>_P(X|Z,F,Q)P(Z|F, Q)

V4

=> P(X|Z,F)P(Z|Q)

V4

26



structure and other methods

structure
e Use conjugate Dirichlet priors for F, Q
® Derive a Gibbs sampler

¢ |nference is based on samples from posterior distr.

ADMIXTURE
® Fast numerical methods to maximize likelihood

FRAPPE
e Derive an EM algorithm to find local optimum F, Q

27



Another way to solve incomplete data problems

We have emphasized EM and HMM methods for analysis
problems where some data is unobserved.

structure introduces another way: data augmentation. In an
MCMC sampling routine, we augment the data with values for
the unobserved Z. This is the BDA approach.

The frequentist approach is EM, to impute the unobserved Z
with expected values.

In general,
® Frequentist methods are faster
® Bayesian methods are more flexible

28



Thrush data in structure paper
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Figure: Triangle plots for posterior mean admixture proportions
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Bryc, et al. (2010)

Global ancestry
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Local ancestry interval (LAI)

Model-based clustering, PCA treat markers as independent.
Ancestry occurs in chunks, similar to IBD.

If admixture occured G generations ago, post-admixture
crossovers occur every 1/G Morgans.

e Admixture in Americas is G ~ 10, so LAls =~ 10 cM
e Not all crossovers switch ancestry, so LAls should be longer

Popular methods
® RFMix
e | AMP-LD
* HapMix

32



Use cases for LAls

Population genetics on ancestral groups of the admixed
» Learn historical demography of indigeneous peoples

e Determine identity of ancestral populations
» Which part of Africa is African ancestry from?

Estimate timing of admixture events

Admixture mapping
» Do LAls correlate with trait values?

33



RFMix and other methods

Previous methods work for unlinked loci. To model LD, use a
Li + Stephens (2003) type model with the augment
(ancestry + copied reference haplotype).

® HapMix : does the above; 2 pops only; does phasing
simulaneously

® LAMP-LD : use a haplotype frequency models with fewer
states (faster)

® RFMix : use conditional random field, similar to HMM, but
w/o0 modeled haplotype frequencies

34



LAls for AAs
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Figure: Example local ancestry intervals for African-Americans and
recent African + European admixture. Blue = African ancestry, red =
European ancestry, green = shared



Schematic for ancestry + LD model
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Figure: Copying from reference haplotypes. Blue and orange denote
distinct ancestral populations. Asterisks denote ancestry switches
(MOSAIC paper, 2019)



Admixture mapping

Goal: check for association between local ancestry and trait

® When population-specific allele frequencies differ a lot
at causal locus

Procedure

1. Infer local ancestry from (phased) genotype data

2. Testif # copies of ancestry (0/1/2) is associated with trait
» One ancestry at a time, or all ancestries at once

3. Apply appropriate genome-wide threshold (not 5e-8)
» See Grinde, et al. (2019)

Reference: Shriner, Daniel. 2017. “Overview of Admixture
Mapping.” Current Protocols in Human Genetics. 94(1):
1.23.1-1.23.8.
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Admixture mapping: the math

Notation
® Y istrait
e Xi is number of copies of ancestry at locus
® X,,... are other covariates (age, sex, etc.)

Model
g(Y)=Bo+ BiX1+ BXo+...

Test
® fHy: 31 =0versus Hy : 51 750
e |ikelihood ratio test

38



Another approach: ancestry informative markers (AIMs)

Some markers have very divergent population-specific
allele frequencies.

Procedure
1. Collect a list of AIMs
2. Genotype admixed individuals at the AIMs

3. Test if AIMs are associated with trait

» May have less power to detect effects
» Simpler than LAl inference

39



Admixture mapping: Freedman, et al. (2006)

¢ Incidence of prostate cancer 1.6 fold higher in AAs
® 1300 AIMs genotyped
® GWAS implicates SNPs in 8924 region

4mmm Chromosome 8 peak

Figure: Interpretation same as GWAS Manhattan plots,
except significance threshold may be different
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Admixture mapping: Brown, et al. (2017)

More urine albumin excretion in US Hispanics

12k Hispanics/Latinos from HCHS/SOL study

RFMix to get LAIs

Associated with indigenous ancestry in chromosome 2

A

~log1o(p)

Figure:

Chromosome

2

American ancestry associated with chromosome 2 hit
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Admixture mapping: Horimoto, et al. (2021)

e Studied 2565 Caribbean Hispanics
® No GWAS signal found for Alzheimer’'s dementia
e American local ancestry in 3q13.11 has protective effect

B Native American

3q13.11
652231
9p23

IS

-log10(P)

1 2 3 45 6 7 8 91011121314 16 182022
Chromosome

Figure: Manhattan plot for indigenous American ancestry
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Admixture mapping: pros and cons versus GWAS

These are shared between admixture and linkage mapping.

Pros
¢ Can find signals from variants not genotyped

¢ Can find signals from variants not imputed well
(structural variation)

Cons

e |f causal marker is genotyped,
indirect method — less power

® Any signal covers wide region
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Admixture mapping: pros and cons versus linkage

Pros
e Signals cover tighter but wide regions
® Do not require families

Con
® Do not obtain the power of families to find Mendelian traits

Complex traits — admixture mapping, GWAS
Mendelian traits— linkage mapping
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