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Genetic drift

• Gene pool for populations follows different random
trajectory after a population split, e.g. “Out of Africa”

• Some variants drift to 0 (loss) or 1 (fixation) frequency
• Some variants become private to a population
• In general,

▶ Small population size→more drift
▶ Longer split time→more drift
▶ Migration back and forth→ less drift

• Consequence: conclusions in one population may not be
portable to another population
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Other considerations

From Oni-Orisan, et al. (2021), African populations have:
• Greatest genetic diversity
• Smallest LD blocks
• Largest number of population-specific alleles
• Lowest proportion of recent deleterious variants
• Most extensive population structure
• Deepest historical lineage

Consequence: conclusions in one population may not be
portable to another population

Contribute to EC discussion to engage w/ this paper more.
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Other considerations

Most indigenous populations have some admixture.
• Migration brings populations in contact.
• Exchange of genetic material.
• Allele frequencies depend on haplotype background.
• Ancestry switches occur along chromosomes.

Consequence:
• Many methods assume homogeneous population(s)
• Admixed sample is homogeneous in blocks
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Equity in genetics research

Figure: Mean and median sample sizes for different GWAS in the
NHGRI GWAS catalog from 2005-2018.
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Equity in genetics research

Problems:
• Some clinical results only benefit one population
• Some clinical tools (PRS, etc.) may be harmful to groups
• Some clinical phenotypes may differ among populations
(e.g., dementia in non-white populations)

• Some groups may provide evidence to further disease
etiology and our understanding of human genomes

Discussion: please share any additional problems you see with
regard to equity in clinical and genetics research.
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Equity in genetics research

Resources:
• Journal club on diversity in genetics
• An array for multiethnic samples
• Embracing genetic diversity to improve Black health
• Malaspinas, Anna Sapfo, Michael C. Westaway, Craig
Muller, Vitor C. Sousa, Oscar Lao, Isabel Alves, Anders
Bergström, et al. 2016. “A Genomic History of Aboriginal
Australia.” Nature 538 (7624): 207–14.

Discussion: please share any additional resources you know.
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Global ancestry

Global refers to ancestry composition of entire genome
• E.g., an African-American individual may have
70% West African ancestry and 30% European ancestry

• Here “ancestry” means similarity with ref. pop.

Motivation: linear modeling
• Model says E[g(y)] = β0 + β1x1 + β2x2 + . . .

▶ Link g(·) is usually identity g(y) = y or log-odds
• Interpretation: β1 is average effect of increment +1 in x1,
holding x2, . . . fixed
▶ Include data x2, . . . so as to give stronger evidence to

association signal between y and genetic marker x1
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Genetic data on diverse samples

• Hard to identify population groups with a few loci,
even if population-specific allele frequencies are distinct

• Arrays contain thousands of genetic markers
• Sequences contain millions of genetic markers
• Use dimension reductionmethods to cluster samples,
aggregating over small signals of population-specific
allele frequencies
▶ Largest signal is African versus non-African
▶ Second signal is Asian and American versus Europe
▶ Finer signals could be large inversion regions, relatives

▶ Caution: do not over-interpret your results
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Principal component analysis

Goal: find an orthogonal (perpendicular) matrix U that
determines a change of variables Z = XU such that

• Columns of Z are ordered by increasing variability
• Columns of Z are uncorrelated
• (Normalized)

∑p
i=1 u

2
ji = 1 for each column of U

Keep q much less than p of the U, Z columns
• Columns of U are loadings
• Columns of Z are PCs

Interpretation: loadings define direction of most variation
in a high dimensional (vector) space
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Principal components analysis

Why does PCA make sense for genetic data analysis?
• Genetic markers are correlated
• Many genetic markers
• Efficient matrix calculations
• PC is linear combination of loadings,
so interpretation is possible

• Promotes visual/graphical diagnostics

Interpretation:
• Direction of most variation is African versus non-African
• Direction of second most variation is Asian and American
versus European
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PCA: Bryc, et al. (2010)

Figure: PC 1 by PC 2 for labeled Hispanic/Latino populations
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PCA: Novembre, et al. (2008)

Figure: PCs 1 and 2 describe approximate NS and EW clines in
European populations
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PCA: references

• James, G., D. Witten, T. Hastie, and R. Tibshirani. n.d. “An
Introduction to Statistical Learning.” Springer.
▶ Chapters 6 and 10

• Lay, David C., Steven R. Lay, and Judi J. McDonald. 2016.
Linear Algebra and Its Applications. Pearson.
▶ Section 7.5

• Search for blogs (Towards Data Science) or StackExchange
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Multidimensional scaling

This is a less popular alternative to PCA.

Given dissimilarity (distace) matrix D = (dij), find
matrix Z such that

dij ≈ ||zi − zj ||2
Keep q much less than p of the Z columns.

• For classical MDS, ≈ is =, so this is the same as PCA.
• Can handle non-Euclidean distances.
• PCA for R: example 1, example 2
• Example R code for MDS
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https://www.r-bloggers.com/2021/05/principal-component-analysis-pca-in-r/
https://bioconductor.org/packages/devel/bioc/vignettes/PCAtools/inst/doc/PCAtools.html
http://faculty.washington.edu/sguy/local_ancestry_pipeline/mds_rcode_pipeline.R


Matrix methods: recap

• PCs can summarize continental ancestries,
longitude versus latitude within continent

• PCs do not say an African-American individual is
70% West African ancestry and 30% European ancestry

• Use PCs in GWAS to adjusting for confounding
due to population structure

• Challenge: how many PCs do we use?
▶ Famously, the K problem
▶ How do we visualize more than 2 PCs?
▶ How do we interpret clusters?
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Bayesian data analysis

Characterize uncertainty in parameter θ using probability
• Assume data X comes from modelMθ

• Assume θ comes from prior π
▶ π may have “hyperparameters”

• Analogy: updating your initial beliefs with evidence
as you collect more data

Apply Bayes rule to get posterior for θ

P(θ|X ) =
P(X |θ)× π(θ)

P(X )

∝ P(X |θ)× π(θ)

Sample from P(θ|X ) to report summaries (means, quantiles)
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Bayesian data analysis

Ignore the normalizing constant P(X ). For conjugate priors, we
observe that P(X |θ)π(θ) looks like model we are familiar with.

• Normal-normal
• Beta-binomial
• Multinomial-Dirichlet

Inference of θ ∈ Rp for p ≥ 2 may require sampling from
marginals of θ.

• Here the ∝ is useful
• Search “Gibbs sampling”
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https://en.wikipedia.org/wiki/Conjugate_prior


BDA: normal-normal conjugacy

X |θ ∼ N(θ, σ2
1)

θ ∼ N(µ2, σ
2
2)

P(θ|X ) =
P(X |θ)× π(θ)

P(X )

∝ P(X |θ)× π(θ)

∝ exp((X − θ)2/(2σ1))× exp((θ − µ2)
2/(2σ2))

∝ exp((θ − µ)2/(2σ))

θ|X ∼ N(µ, σ2)
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BDA: Poisson-gamma conjugacy

X |θ ∼ Poisson(θ)
θ ∼ Gamma(a, b)

P(θ|X ) =
P(X |θ)× π(θ)

P(X )

∝ P(X |θ)π(θ)

=
exp(−θ)θX

X !
× baθa−1 exp(−bθ)

Γ(a)

∝ exp(−(b + 1)θ)θX+a−1

θ|X ∼ Gamma(X + a, b + 1)
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BDA: beta-binomial conjugacy

X |θ ∼ Binomial(n; θ)
θ ∼ Beta(a, b)

P(θ|X ) =
P(X |θ)× π(θ)

P(X )

∝ P(X |θ)π(θ)

=

(
n

X

)
θX (1 − θ)n−X × θa−1(1 − θ)b−1

B(a, b)

∝ θX+a−1(1 − θ)n−X+b−1

θ|X ∼ Beta(X + a, n − X + b)
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BDA: multinomial-Dirichlet conjugacy

(X1,X2, . . . ,Xq)|p1, p2, . . . , pq ∼ M(n; p1, p2, . . . , pq)

(p1, p2, . . . , pq) ∼ Dirichlet(α1, α2, . . . , αq)

P(θ|X ) =
P(X |θ)× π(θ)

P(X )

∝ P(X |θ)π(θ)

∝
q∏

i=1

pXi
i ×

q∏
i=1

pαi−1
i

=

q∏
i=1

pXi+αi−1
i

(p1, p2, . . . , pq)|(X1,X2, . . . ,Xq) ∼ Dirichlet(X1 + α1,X2 + α2, . . . )
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BDA: recap

• Connect priors beliefs with empirical data
• Posterior means can be posed as convex combination of
sample mean and prior mean
▶ For example, the posterior mean in the beta-binomial case:

E[θ|X ] =
X + a

n + a+ b
=

a+ b

n + a+ b

a

a+ b
+

n

n + a+ b

X

n

where a/(a+ b) and X/n are prior and sample means.

• Pay attention to kernel (main part of density function),
and simplify with algebra

• For conjugate priors, we can efficiently sample with
well-known distributions
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A population structure model

Notation
• X : matrix of genotypes of all individuals
• Z : populations of individuals at each marker

▶ Consider K populations
• Q : admixture proportions of individuals
• F : population-specific allele frequencies per marker
• X observed, Z unobserved, (F ,Q) to be estimated
• Assume loci are unlinked

Likelihood
L(F ,Q) = P(X |F ,Q) =

∑
Z

P(X |Z ,F ,Q)P(Z |F ,Q)

=
∑
Z

P(X |Z ,F )P(Z |Q)
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structure and other methods

structure
• Use conjugate Dirichlet priors for F ,Q
• Derive a Gibbs sampler
• Inference is based on samples from posterior distr.

ADMIXTURE
• Fast numerical methods to maximize likelihood

FRAPPE
• Derive an EM algorithm to find local optimum F ,Q
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Another way to solve incomplete data problems

We have emphasized EM and HMMmethods for analysis
problems where some data is unobserved.

structure introduces another way: data augmentation. In an
MCMC sampling routine, we augment the data with values for
the unobserved Z . This is the BDA approach.

The frequentist approach is EM, to impute the unobserved Z
with expected values.

In general,
• Frequentist methods are faster
• Bayesian methods are more flexible
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Thrush data in structure paper

Figure: Triangle plots for posterior mean admixture proportions
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Global ancestry: Bryc, et al. (2010)

Figure: structure analyses for Europeans, Africans, and
African-Americans.
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Local ancestry interval (LAI)

Model-based clustering, PCA treat markers as independent.
Ancestry occurs in chunks, similar to IBD.

If admixture occured G generations ago, post-admixture
crossovers occur every 1/G Morgans.

• Admixture in Americas is G ≈ 10, so LAIs ≈ 10 cM
• Not all crossovers switch ancestry, so LAIs should be longer

Popular methods
• RFMix
• LAMP-LD
• HapMix
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Use cases for LAIs

• Population genetics on ancestral groups of the admixed
▶ Learn historical demography of indigeneous peoples

• Determine identity of ancestral populations
▶ Which part of Africa is African ancestry from?

• Estimate timing of admixture events

• Admixture mapping
▶ Do LAIs correlate with trait values?
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RFMix and other methods

Previous methods work for unlinked loci. Tomodel LD, use a
Li + Stephens (2003) type model with the augment
(ancestry + copied reference haplotype).

• HapMix : does the above; 2 pops only; does phasing
simulaneously

• LAMP-LD : use a haplotype frequency models with fewer
states (faster)

• RFMix : use conditional random field, similar to HMM, but
w/o modeled haplotype frequencies
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LAIs for AAs

Figure: Example local ancestry intervals for African-Americans and
recent African + European admixture. Blue = African ancestry, red =
European ancestry, green = shared
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Schematic for ancestry + LD model

Figure: Copying from reference haplotypes. Blue and orange denote
distinct ancestral populations. Asterisks denote ancestry switches
(MOSAIC paper, 2019)
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Admixture mapping

Goal: check for association between local ancestry and trait
• When population-specific allele frequencies differ a lot
at causal locus

Procedure
1. Infer local ancestry from (phased) genotype data
2. Test if # copies of ancestry (0/1/2) is associated with trait

▶ One ancestry at a time, or all ancestries at once
3. Apply appropriate genome-wide threshold (not 5e-8)

▶ See Grinde, et al. (2019)

Reference: Shriner, Daniel. 2017. “Overview of Admixture
Mapping.” Current Protocols in Human Genetics. 94(1):
1.23.1–1.23.8.
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Admixture mapping: the math

Notation
• Y is trait
• X1 is number of copies of ancestry at locus
• X2, . . . are other covariates (age, sex, etc.)

Model
g(Y ) = β0 + β1X1 + β2X2 + . . .

Test
• H0 : β1 = 0 versus H1 : β1 ̸= 0
• Likelihood ratio test
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Another approach: ancestry informative markers (AIMs)

Some markers have very divergent population-specific
allele frequencies.

Procedure
1. Collect a list of AIMs
2. Genotype admixed individuals at the AIMs
3. Test if AIMs are associated with trait

▶ May have less power to detect effects
▶ Simpler than LAI inference
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Admixture mapping: Freedman, et al. (2006)

• Incidence of prostate cancer 1.6 fold higher in AAs
• 1300 AIMs genotyped
• GWAS implicates SNPs in 8q24 region

Figure: Interpretation same as GWAS Manhattan plots,
except significance threshold may be different
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Admixture mapping: Brown, et al. (2017)

• More urine albumin excretion in US Hispanics
• 12k Hispanics/Latinos from HCHS/SOL study
• RFMix to get LAIs
• Associated with indigenous ancestry in chromosome 2

Figure: American ancestry associated with chromosome 2 hit
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Admixture mapping: Horimoto, et al. (2021)

• Studied 2565 Caribbean Hispanics
• No GWAS signal found for Alzheimer’s dementia
• American local ancestry in 3q13.11 has protective effect

Figure: Manhattan plot for indigenous American ancestry
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Admixture mapping: pros and cons versus GWAS

These are shared between admixture and linkage mapping.

Pros
• Can find signals from variants not genotyped
• Can find signals from variants not imputed well
(structural variation)

Cons
• If causal marker is genotyped,
indirect method→ less power

• Any signal covers wide region
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Admixture mapping: pros and cons versus linkage

Pros
• Signals cover tighter but wide regions
• Do not require families

Con
• Do not obtain the power of families to find Mendelian traits

Complex traits→ admixture mapping, GWAS
Mendelian traits→ linkage mapping
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