
Structured Query Language (SQL)
Seth Temple

sethtem@umich.edu

This handout provides knowledge of relational databases and specifically use-
ful SQL terms.

1 The very basics

Relational databases organize data into tables with well-defined relationships
between them. They enforce data consistency and accuracy through con-
straints, such as primary keys and foreign keys. Relational databases
offer powerful queries, via the structured query language (SQL), for retriev-
ing and manipulating data. Relational databases are widely used in enterprise
applications.

SQL is a declarative programming language. You specify what you want to do,
and the program gets the outcome without you specifying how to achieve the
outcome. Many are more familiar with imperative programming like Python,
where the focus is on how to perform the task. Some important SQL basics
are:

• Always finish queries with semicolon ;.

• Asterisk * will show all data in the table.

• Standard naming conventions:

– The language is case-insensitive, but

– All caps for key words

– Camel case for column names

– Call tables as plurals

• The language is not syntax sensitive like Python. Use new lines to im-
prove code readability.

• Use the keyword AS to provide shorthand for columns

• Use the keyword LIMIT followed by integers to see the start of a table.

1



Structured Query Language (SQL)
Seth Temple

sethtem@umich.edu

Different databases may have different commands and data types imple-
mented. Some example database management systems (DBMS) are:

• MySQL : open-source

• SQLite : lightweight and self-contained, often used in mobile

• Microsoft SQL Server : commercially available

• Cloud-based SQL services (Amazon, Azure, Google)

• You can interface with SQL via Python, SAS, etc.

• NoSQL databases are designed to handle large amounts of unstructured
or semi-structured data and provide a flexible schema or no schema at
all. An example is MongoDB. These DMBS are more appropriate for
complex data like graph data or JSON-formatted data.

References for this document come from this LinkedIn Learning collection,
including some practice exercises. I also used Llama from Meta AI to draft
this handout.

2

https://www.linkedin.com/learning-login/share?account=42573940&forceAccount=false&redirect=https%3A%2F%2Fwww.linkedin.com%2Flearning%2Fcollections%2F7337952210628030464%3Ftrk%3Dshare_collection_url%26shareId%3DnAQbGIYiRLW9xifxsg37EA%253D%253D


Structured Query Language (SQL)
Seth Temple

sethtem@umich.edu

2 Data manipulation language (DML)

Most data scientists use SQL as a DML. The acronym CRUD, which stands
for Create, Read, Update, and Delete, describes the functions of a DML. The
main SQL key word that we use is SELECT. The following is a typical com-
mand that we use:

SELECT ColumnOne, ColumnTwo AS Column2
FROM table
WHERE some condition
ORDER BY Column2 ASC
LIMIT 10;

2.1 Filtering

Filter with the keyword WHERE followed by conditions.

• Use = operator, in contrast to the Python == operator

• AND plus OR for logic

• Use parentheses for complex logic

• Use IS NULL plus IS NOT NULL, in contrast to = NULL

• Use LIKE ‘%somestring%’ for regular expressions. There is syntax for
more complicated regular expressions as well.

• Use HAVING instead when filtering on grouped data.

2.2 Math

The following functions are useful for math aggregate operations.

• +, -, *, /, %

3



Structured Query Language (SQL)
Seth Temple

sethtem@umich.edu

• COUNT

• MIN

• MAX

• SUM

• AVG

• ROUND

• VAR POP

• STDDEV POP

• TRUNC

• CEIL

• FLOOR

You use GROUP BY followed by one or more columns (comma separated).

2.3 Text

The following functions are useful for text operations.

• LOWER

• UPPER

• SUBSTR(phrase, start index, string length)

• CONCAT(phrase1, phrase2)

• REPLACE(phrase, substr1, substr2)

• INITCAP

• LENGTH

• TRIM

4



Structured Query Language (SQL)
Seth Temple

sethtem@umich.edu

2.4 Joins

Joining tables, via their relations with common keys, is a main advantage
of SQL compared to Excel, Python, and other software. The main syntax is
JOIN table1.Column ON table2.Column. Below is a visual of the join types.

2.5 Insert, update, and delete

INSERT INTO table name (column1, column2, ...)
VALUES (value1, value2, ...);

UPDATE table name
SET column1 = value1, column2 = value2, ...
WHERE condition;

DELETE FROM table name
WHERE condition;

5



Structured Query Language (SQL)
Seth Temple

sethtem@umich.edu

3 Data definition language (DDL)

Tables are connected via keys. Below is an example of a database solution
for a consumer business. Data scientists may be less involved in creating the
database in an enterprise.

3.1 Tables

The command to make a table is:

CREATE TABLE table (
ColumnOne type,
ColumnTwo type,
PRIMARY KEY (ColumnOne) AUTO INCREMENT
)

6



Structured Query Language (SQL)
Seth Temple

sethtem@umich.edu

The options to define columns in the table are the following. You append
these to your column definitions.

• AUTO INCREMENT : good to use for the primary key

• FOREIGN KEY : references primary key in another table, e.g., FOR-
EIGN KEY (KeyColumn) REFERENCES othertable(OtherColumn)

• UNIQUE : requires that all values are unique

• NOT NULL : requires that all values are specified

• CHECK : enforces a specific condition,
e.g., (Country IN (’USA’, ’Canada’))

• DEFAULT : fills value when unspecified,
e.g., DEFAULT CURRENT TIMESTAMP

3.2 Data types

The data types are the following.

• INT (faster and smaller storage up to 32 bits) or BIGINT (64 bits for
high-volume). Use UNSIGNED for non-negative values.

• VARCHAR(###) or CHAR(###)

– CHAR is fixed length but can be faster

– VARCHAR can be slower but saves memory

• Floating point numbers

– FLOAT : 32 bit precision

– DOUBLE : 64 bit precision

– DECIMAL(num digits, num places)

• DATE or TIME or DATETIME or TIMESTAMP

• BOOLEAN

7



Structured Query Language (SQL)
Seth Temple

sethtem@umich.edu

3.3 Indices

Indices help optimize for performance in huge tables:

• Use for columns that we frequently filter on

• Use for columns with many unique values

• Slows down write operations

• Commands:

– CREATE INDEX IndexName ON table (IndexedColumn);

– SHOW INDEX FROM table;

– DROP INDEX IndexName FROM table;

3.4 Views

These are virtual tables based on a SELECT query. It presents a simplified
table without storing new data. The syntax is the following.

CREATE VIEW view name AS
ColumnOne, ColumnTwo, ...
FROM table
WHERE Condition;

You can use views to restrict data access to some roles with
GRANT SELECT ON view name TO job role;
REVOKE SELECT ON view name TO user;

You can use GRANT and REVOKE for other key words and on tables.

8



Structured Query Language (SQL)
Seth Temple

sethtem@umich.edu

3.5 Schemas

A schema is the blueprint of a database, including the relationships between
different tables, columns, and data types. It defines how data is stored and
organized in a database. You can set one up by the following.

CREATE DATABASE mydatabase;

USE mydatabase;

CREATE SCHEMA myschema;

CREATE TABLE myschema.customers (
customer id INT PRIMARY KEY,
name VARCHAR(255),
email VARCHAR(255)
);

CREATE TABLE myschema.orders (
order id INT PRIMARY KEY,
customer id INT,
order date DATE,
FOREIGNKEY (customer id) REFERENCES myschema.customers(customer id)
);

To use tables shorthand within the schema, you may use USE myschema;

9



Structured Query Language (SQL)
Seth Temple

sethtem@umich.edu

4 More examples

4.1 Apply discount price to items based on switch logic

This example shows how to use switch logic with CASE, WHEN, THEN,
and ELSE.

SELECT
Name,
Price AS OriginalPrice,

CASE
WHEN Price < 7. THEN ‘5%’
WHEN Price BETWEEN 7. AND 10. THEN ‘10%’
ELSE ‘15%’
END DiscountPercent,

ROUND(
Price * (
1 - CASE
WHEN Price < 7. THEN 0.05
WHEN Price BETWEEN 7. AND 10. THEN 0.10
ELSE 0.15
END
),
2
) DiscountPrice

FROM Dishes
ORDER BY Name ASC;

10



Structured Query Language (SQL)
Seth Temple

sethtem@umich.edu

4.2 How many pizzas were ordered each day?

This example shows how to cast from a datetime column. Moreover, the filter
is on the individual item, not a grouped column.

SELECT
COUNT(Orders.OrderID) NumSold,
CAST(Orders.OrderDate AS DATE) Day
FROM Orders
JOIN OrdersDishes ON OrdersDishes.OrderID = Orders.OrderID
JOIN Dishes ON Dishes.DishID = OrdersDishes.DishID
WHERE Dishes.Name = ’Handcrafted Pizza’
GROUP BY Day
ORDER BY Day ASC;

4.3 Find your top customers

This example shows how to filter on a grouped column. Note how we use
the many-to-many table OrdersDishes to combine data from the Orders and
Dishes tables.

SELECT
Customers.CustomerID,
Customers.FirstName,
Customers.LastName,
SUM(Dishes.Price) AS TotalSpend
FROM Orders
JOIN Customers ON Customers.CustomerID = Orders.CustomerID
JOIN OrdersDishes ON Orders.OrderID = OrdersDishes.OrderID
JOIN Dishes ON OrdersDishes.DishID = Dishes.DishID
GROUP BY Customers.CustomerID
HAVING TotalSpend > 450.
ORDER BY TotalSpend DESC;

11



Structured Query Language (SQL)
Seth Temple

sethtem@umich.edu

5 SQL in Python

Words

12



Structured Query Language (SQL)
Seth Temple

sethtem@umich.edu

6 Advanced

Words

13


	The very basics
	Data manipulation language (DML)
	Filtering
	Math
	Text
	Joins
	Insert, update, and delete

	Data definition language (DDL)
	Tables
	Data types
	Indices
	Views
	Schemas

	More examples
	Apply discount price to items based on switch logic
	How many pizzas were ordered each day?
	Find your top customers

	SQL in Python
	Advanced

